首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of an external magnetic field with a strength up to 140 kOe on the phase transitions in manganese arsenide single crystals has been investigated. The existence of unstable magnetic and crystal structures at temperatures above the Curie temperature T C = 308 K has been established. The displacements of manganese and arsenic atoms during the magnetostructural phase transition and the shift in the temperature of the first-order magnetostructural phase transition in a magnetic field have been determined. It has been shown that the magnetocaloric effect in a magnetic field of 140 kOe near the Curie temperature T C is equal to ??T ?? 13 K. A model of the superparamagnetic state in MnAs above the temperature T C has been proposed using the data on the magnetic properties and structural transformation in the region of the first-order magnetostructural phase transition. It has been demonstrated that, at temperatures close to T C, apart from the contribution to the change in the entropy from the change in the magnetization there is a significant contribution from the transformation of the crystal lattice due to the magnetostructural phase transition.  相似文献   

2.
The electrophysical and magnetic properties of recently discovered high-pressure phases in the GaSb-Mn system with simple cubic and tetragonal structures have been examined. It has been shown that samples with the primitive cubic structure for low temperatures are in the ferromagnetic state and the Curic temperature depends on the initial manganese content and reaches T c = 280 K for x = 0.6. It has been shown that these samples for a manganese content x ≤ 0.5 are in the semiconducting state with large impurity conduction and pass to the metallic state as x increases. The GaSbMn phase with the tetragonal structure has ferromagnetic properties up to temperatures of T ~450 K (at which the phase begins to decay) and exhibits metallic properties. The magnetization at T = 77.3 K is equal to M = 0.58 μB and 0.28 μB per manganese ion for the simple cubic and tetragonal phases, respectively.  相似文献   

3.
It has been found that hydrogen penetration into chromium-doped polycrystalline thin vanadium dioxide films occurs with a lower rate than in the case of pure vanadium dioxide films. It has been shown that hydrogenation of films with low chromium concentrations is accompanied by a decrease in the phase transition temperature below T c = 340 K. However, at room temperature in these hydrogenated films, no traces of M1 monoclinic phase have been observed. As the chromium concentration increases, hydrogenation ceases to be accompanied by the decrease in the phase transition temperature.  相似文献   

4.
This paper reports on the results of investigations of the thermal properties and thermal conductivity of single crystals of homogeneous solid solutions Fe x Mn1 ? x S with a cubic NaCl structure, which have been prepared by the cation substitution for divalent manganese ions in manganese monosulfide. It has been revealed that the heat capacity and thermal conductivity exhibit anomalies in the range of the magnetic transition. The cation substitution is accompanied by an increase in the phase transition temperature.  相似文献   

5.
The electrical conductivity of the semiconducting phase of vanadium dioxide single crystals is studied over a wide range of temperatures. It is shown that the electrical conductivity varies with temperature as log σ ~ T in the range 340–170 K and as log σ ~ 1/T at temperatures below 120 K. The experimental results are described in the framework of the model in which the temperature dependence of the hopping conductivity of small-radius polarons is determined by the dependence of the resonance integral on the amplitude of thermal lattice vibrations.  相似文献   

6.
The magnetic and transport properties of La1?x Mn1+x O3 manganites with excess manganese are studied. It is shown that magnetic and charge ordering heavily depends on the superstoichiometric manganese content, magnetic field, and pressure. The magnetoresistive effect (MRE) is enhanced as the manganese concentration increases. In addition to the paramagnet-ferromagnet transition, the temperature dependences of the magnetization exhibit anomalies at low temperatures in samples with x=0.1–0.4. The magnetization decreases at T<45 K in fields H<0.2 kOe and increases as H changes from 0.2 to 10 kOe. An analysis shows that the features observed at low temperatures are most probably related to the transition from the ferromagnetic state to the canted spin structure in clusters of mixed-valence manganese ions. The temperature dependences of the magnetization and resistivity remain unchanged as the pressure increases. It is demonstrated that the Curie and metal-dielectric transition temperatures shift to higher values as the manganese concentration increases under pressure. The temperature of the MRE peak increases under pressure, while the MRE decreases.  相似文献   

7.
We report b-axis electrical conductivity data for TSeF-TCNQ single crystals from 12 to 300 K under hydrostatic pressures up to 9 kbar. The single anomaly visible in the conductivity at 29 K and the low temperature conductivity gap rise under pressure at the same rate of ~ 6% kbar-1. It has been found that the pressure dependence of the metal-insulator phase transition is qualitatively consistent with a mean field formulation of the Peierls transition. A Gruneisen constant of 0.64 for TSeF-TCNQ has been derived from this pressure study together with recent optical and compressibility investigations. The pressure dependence of the conductivity anisotropies at room temperature in TSeF-TCNQ and TTF-TCNQ are reported. The magnitude of the anisotropies in the two compounds are found to be essentially the same. The striking result, however, is that the anisotropies in both compounds are found to be independent of pressure up to 9 kbar.  相似文献   

8.
A weighted phonon frequency distribution has been measured in PbF2 at temperatures 10, 302, 660 and 910 K, using a neutron scattering technique. At 10 K good agreement is found between the measured distribution and the phonon density-of-states calculated from the low temperature dispersion relation of PbF2. At the higher temperatures, near the ionic conductivity transition temperature, Tc ~ 700 K, the optic modes are observed to broaden into a high energy tail consistent with strong anharmonicity or extensive disorder. A low energy peak arising from transverse acoustic modes remains well defined even at temperatures above Tc.  相似文献   

9.
This paper reports on a study of the magnetic properties, magnetoresistance, and phase transitions in the semiconducting manganite multiferroics Tb0.95Bi0.05MnO3 and Eu0.8Ce0.2Mn2O5 whose dielectric properties have been a subject of an earlier study. An analysis of these properties has led us to the conclusion that the above crystals at temperatures T ≥ 180 K undergo phase separation with the formation of a dynamic periodic alternation of quasi-2D layers of manganese ions in different valence states, i.e., charge-induced ferroelectricity. This state exhibits a giant permittivity and ferromagnetism in the layers containing Mn3+ and Mn4+ ions. At low temperatures (T < 100 K), the phase volume is occupied primarily by the dielectric phase. Studies of the magnetic properties and the effect of the magnetic field on the dielectric properties of crystals substantiate the scenario of the formation of a state with giant permittivity put forward by us. At low temperatures, Tb0.95Bi0.05MnO3 exhibits features at the points of phase transitions in pure TbMnO3. A ferromagnetic moment is observed to exist at all the temperatures covered. At the boundaries of the quasi-2D layers, magnetic-field-induced jumps of the electrical resistivity caused by metamagnetic transitions in the layers with Mn3+ and Mn4+ ions are observed. At temperatures T ≥ 180 K, the electrical resistivity undergoes a periodic variation in a magnetic field which is a manifestation of carrier self-organization. A high magnetic field is capable of shifting the phase transition from 180 K to higher temperatures and inducing additional phase transitions.  相似文献   

10.
The complex permittivity ?* of ceramics of bismuth-lanthanum manganite Bi0.5La0.5MnO3 has been measured in ranges of temperatures T = 10–200 K and frequencies f = 102–106 Hz. Clearly pronounced regions of the non-Debye dielectric relaxation have been revealed at low temperatures (T < 90 K). To describe them, the possible mechanisms have been proposed and discussed. The temperature dependences of magnetization, the anomalous behavior of which can be associated with the phase transition from the paramagnetic phase into the ferromagnetic phase occurring at T ~ 40–80 K, have been measured in the temperature range T = 10–120 K.  相似文献   

11.
At low temperatures, a perfect quasicrystal is in the “critical” state of metal-insulator transition. A power-law temperature dependence of conductivity, which was experimentally observed at T<5 K in the icosahedral phase of Al-Pd-Re, was obtained using the critical wave functions. Mott’s hopping law was also observed in the Al-Pd-Re samples and explained by the delocalization of electronic states in the momentum space.  相似文献   

12.
The influence of hydrogenation on electrical conductivity of vanadium dioxide thin films has been investigated. It has been shown using measurements of the electrical conductivity that the hydrogenation of vanadium dioxide thin films leads to a decrease in the temperature of the phase transition from the tetragonal phase (with “metallic” conductivity) to the semiconducting monoclinic phase. It has been found that, upon doping of vanadium dioxide with hydrogen, the electrical conductivity of the monoclinic phase can increase by several orders of magnitude. Nonetheless, the temperature dependence of the electrical conductivity of hydrogenated films exhibits a typical semiconducting behavior in the temperature range where the monoclinic phase is stable.  相似文献   

13.
The conductivity of silicon inversion layers in MOS structures has been measured in the temperature range 0.03 ? T ? 4.2 K at low carrier densities. The conductivity is activated but saturates at the lowest temperatures for both n- and p-channels. The saturation conductivity is found to increase with reverse substrate bias.  相似文献   

14.
Using pulse echo overlap measurement, the elastic behavior of amorphous carbon has been studied at ambient and low temperatures. The smaller ratio B/G of the bulk modulus to shear modulus and smaller Poisson's ratio σ at room temperature indicate that there is an intrinsic stiffening of transverse acoustic phonons in the amorphous carbon. The acoustic velocity and attenuation for longitudinal modes have been measured between 2.1 and 300 K at three frequencies of 7, 21 and 35 MHz, respectively. Their frequency and temperature dependence are observed. The elastic constant C11 increases with decreasing temperature and show enhanced stiffening at low temperatures. In the 130-220 K region, the abnormal change and effect of longitudinal velocity and attenuation with temperature and frequency, and a phase transition associated with structure relaxations are discussed.  相似文献   

15.
The temperature dependences of g-factor and linewidth of C11,3NiCl2,13 single crystals have been measured from 10 to 400 K. The data indicate that nickel ions in graphite behave at low temperatures like Ising ions, with a phase transition occurring at about 30 K.  相似文献   

16.
We used optical birefringence, X-ray and neutron diffraction methods with single crystals to study the structural phase transitions of the perowskite-type layer structures of (CH3NH3)2MeCl4 with Me=Mn, Fe. The Mn-compound shows the following structural transitions at 394 K — a continuous order-disorder phase transition from tetragonal symmetry I4mmm to orthorhombic space group Abma (Cmca in reference 10); at 257 K — a discontinuous transition to a second tetragonal modification; at 95 K — a discontinuous transition to a monoclinic phase. For the Fe-compound the corresponding transition temperatures are 328 K and 231 K, respectively. A low temperature monoclinic phase could not be observed. The lattice parameters of the different modifications were determined as a function of temperature. The temperature dependent course of the order parameter has been investigated for the order—disorder transition. For both compounds, all the methods used gave the same value for the critical exponent of β = 0.315.  相似文献   

17.
Phase transitions in CsHSO4 at pressures up to 2.5 GPa have been studied with the help of electrical impedance measurements. The phase boundaries have been identified with the help of calculated activation energies of electrical conductivity and dielectric relaxation time. The derived temperatures of phase transition from the low conductive phase II into super ionic phase I at pressure less than 1 GPa confirm the previous results of Ponyatovski? et al. (1985) [4] and Friesel et al. (1989) [27]. The phase diagram derived in this study for pressure larger than 1 GPa differs from the data of Ponyatovski? et al. (1985) [4]. The phase transitions IV-VI and VI-I occur at higher temperatures having significantly larger Clapeyron slope. The phase VII was not identified from heating cycle and appears only under cooling between phases I and VI. The phase VIII was detected at 2.5 GPa at T<350 K and only during heating.  相似文献   

18.
Resistivity superconducting transition has been for the first time found in single crystal of two-component 0.95(CdSb)–0.05(NiSb) system. End members of the system are not superconductors under normal conditions. Insulating behavior in temperature dependence of the electrical resistivity, which is due to hopping conductivity, precedes the transition. The resistivity superconducting transition is rather broad, since at cooling down the electrical resistivity starts to fall at 10.5 K, whereas zero resistivity is reached only at ~2.3 K. Longitudinal magnetic field gradually depresses superconductivity and shifts the superconducting transition to lower temperatures. Under magnetic field above 0.5 T, superconductivity is totally destroyed. Main features observed in the resistivity superconducting transition, including its unusually big width and insulating electrical behavior above the transition, can be related to inhomogeneity of the single crystal studied. According to XRD and SEM examinations, the single crystal consists of major CdSb phase and minor NiSb phase. The NiSb phase forms inhomogeneities in the CdSb matrix. Micro-sized needle-like NiSb crystals and nano-sized Ni1-xSbx clusters can be considered as typical inhomogeneities.  相似文献   

19.
Transport, thermal and structural properties of the composite solid electrolytes (1 −x)CsHSO4---xSiO2 (where x = 0–0.8) were investigated. The composites were prepared by mechanical mixing of components followed by heating at temperatures near CsHSO4 melting point (483 K). The dependence of low temperature phase conductivity on x has a maximum with a value 2.5 orders of magnitude higher than that of pure CsHSO4 and conductivity is governed by protons. Heterogeneous doping is shown to change markedly the thermodynamic parameters of the ionic component. The phase transition temperature CsHSO4 in the composites decreases from 414 to 350 K with the increase of the content of heterogeneous additive SiO2 from 0 to 0.7. As x raises CsHSO4 the amorphization takes place and the relative change of ionic conductivity at phase transition diminishes, the phase transition becomes diffusive and disappears for the 0.2CsHSO4---0.8SiO2 composite.  相似文献   

20.
The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5−xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field—temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号