首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
采用溶胶 凝胶法合成了BaZr0.9Y0.1O3-δ(BZY),BaCe0.2Zr0.7Y0.1O3-δ(BCZY)固体电解质前驱体,并在1300℃烧结成致密陶瓷。采用热重差热分析(TG DTA),X射线衍射分析(XRD)及电镜测试(SEM,TEM)对样品进行了表征。并以烧结体样品为固体电解质、银钯作电极,测定了其在不同气氛和温度下的电导率。将该陶瓷用于固态质子传导电池中,在常压下以氮气和氢气为原料合成了氨气。结果表明,氨的比产率可达2.93×10-9mol·s-1·cm-2。  相似文献   

2.
采用溶胶-凝胶法, 以低于固相合成法150~250 ℃的温度进行烧结, 分别制备了BaCe0.9Y0.1O3-α和BaCe0.5Zr0.4Y0.1O3-α固体电解质. 应用AUTOLAB PGSTA 30型电化学工作站测定了两种电解质在不同温度下的阻抗谱, 在350~800 ℃范围内电导率分别为1.62×10-4~6.43×10-3 S·cm-1, 2.52×10-5~3.73×10-3 S·cm-1, 电导激活能分别为0.54和0.84 eV. 同时用高温固相合成法合成了BaCe0.9Y0.1O3-α质子导体, 在相同条件下其电导率为1×10-4~4×10-3 S·cm-1, 激活能为0.50 eV. 实验结果表明 用溶胶-凝胶法得到的材料在烧结温度低于固相合成法150~250 ℃的情况下, 制备出的样品电导率高;对于同一质子导体BaCe0.9Y0.1O3-α, 用Zr代替部分Ce, 固体电解质的电导率明显降低.  相似文献   

3.
BaCe0.9Y0.1O3-α固体电解质的离子导电性   总被引:3,自引:1,他引:2  
马桂林 《化学学报》2001,59(11):1878-1882
用交流复阴抗谱法测定了混合离子(质子+氧离子)导电性固体电解质BaCe0.9Y0.1O3-α在600~1000℃下不同气氛(干燥空气、湿润空气及湿润氢气)中的电导率;通过测定总电导率(离子电导率+电子电导率)随气氛中氧分压po2变化,求得离子电导率和离子迁移数;用氢浓差电池方法测得氢气中的质子迁移数。结果表明,BaCe0.9Y0.1O3-α固体电解质在氧分压<10Pa的气氛(如氢气)中几乎为纯离子导体,而在氧分压为10~10^5Pa的气氛(如空气)中为离子和电子空穴混合导体;样品在各气氛中的离子电导率均高于10^-2S·cm^-1。  相似文献   

4.
用高温固相反应法制备了质子导电性陶瓷Ba0.9Sr0.1Ce0.9Nd0.1O3-α。用粉末X-射线衍射(XRD)和扫描电子显微镜(SEM)对该陶瓷材料进行了表征;用交流阻抗谱技术和气体浓差电池方法研究了材料在500~900℃温度范围内、不同气体气氛中的离子导电性,并与BaCe0.9Nd0.1O3-α和Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料的导电性进行了比较。结果表明,该陶瓷材料为单一钙钛矿型BaCeO3斜方晶结构,具有良好的致密性,在高温下、CO2或水蒸气气氛中具有较高的稳定性。在湿润氢气气氛中、500~800℃温度范围内,材料的质子迁移数为1,是一个纯的质子导体;在900℃下,质子迁移数为0.964,是一个质子与电子的混合导体,质子迁移数高于BaCe0.9Nd0.1O3-α(在700~900℃温度范围内,质子迁移数为0.95)。在湿润空气气氛中,材料的质子迁移数为0.019~0.032,氧离子迁移数为0.093~0.209,是一个质子、氧离子和电子空穴的混合导体,总电导率高于Ba0.9Ca0.1Ce0.9Nd0.1O3-α。在氢-空气燃料电池条件下,材料的离子迁移数为0.957~0.903,是一个质子、氧离子和电子的混合导体,离子电导率高于Ba0.9Ca0.1Ce0.9Nd0.1O3-α。  相似文献   

5.
固体氧化物燃料电池(SOFC)陶瓷连接材料的低成本薄膜化制备是现在公认的技术难题。为了改善传统NiO/YSZ阳极与LaCrO3基连接材料的共烧匹配性能,将化学性质稳定的Y0.7Ca0.3Cr0.9Zn0.1O3-δ(YCCZ)连接材料创造性地引入到NiO/YSZ阳极中,制备NiO/YSZ/YCCZ(6∶4∶2,m/m/m)三相复合阳极,并进行烧结特性、微观结构、电导率、热膨胀系数等系列性能的对比测试,结果表明NiO/YSZ/YCCZ新型复合阳极具有优良的综合性能。以NiO/YSZ/YCCZ为支撑体,采用浆料浸渍法制备湿膜,1 400℃空气条件下共烧,成功制备致密La0.7Ca0.3Cr0.97O3-δ连接体薄膜。  相似文献   

6.
李其明  李芳 《化学研究》2010,21(4):72-75
建立了钙钛矿材料中金属离子的碘滴定分析方法,并通过该方法对BaCe0.1CoxFe0.9-xO3-δ和BaZr0.1CoxFe0.9-xO3-δ钙钛矿透氧膜材料中钴铁离子价态进行了测定.研究表明,随着钴含量的增加,钴铁离子的平均价态呈下降趋势,这意味着氧空位浓度也在随之增加.对比发现在相同掺杂比例时(x),BaCe0.1CoxFe0.9-xO3-δ体系中钴铁离子的平均价态要低于BaZr0.1CoxFe0.9-xO3-δ系列中钴铁离子的平均价态,因此BaCe0.1CoxFe0.9-xO3-δ系列比BaZr0.1CoxFe0.9-xO3-δ系列拥有更多氧空位数.  相似文献   

7.
采用硝酸盐-柠檬酸法制备了 BaZr0.1 Ce0.7 Y0.2 O3-α(BZCY)质子电解质及GdBaFeNiO5+δ(GBFN)阴极材料,用浆料旋涂法结合后续的热处理在NiO-BZCY阳极支撑体上制备致密的BZCY电解质薄膜,在电解质薄膜上制备多孔性GBFN阴极膜,成功地组装成合成氨膜反应器.以氢、氮气为反应气体,通过电解方法进行了常压合成氨试验.结果显示,BZCY及GBFN分别具有钙钛矿型及双钙钛矿型结构,NiO与BZ-CY具有良好的化学兼容性,合成氨产率高达1.63 ×10-8 mol·s-1·cm-2,高于迄今所报道的类似方法的合成氨产率.这与BZCY电解质膜优良的导电性能、GBFN膜优良的极化性能密切相关.Ag对GBFN的修饰也有利于氨产率的提高.  相似文献   

8.
采用溶胶-凝胶法合成(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00、0.02、0.05、0.10)氧化物,通过X射线衍射(XRD)、场发射扫描电镜(FESEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明:所有样品均为单一萤石立方结构;少量MoO3的加入提高了材料的致密性,降低了材料的总电阻、晶界电阻和晶界电阻在总电阻中所占比例,提高了材料的电导率.1200 ℃烧结样品24 h,测试温度700℃时,(Ce0.9Nd0.1)1-xMoxO2-δ(x=O.00)总电导率和晶界电导率分别为0.05和O.19 S·m-1,掺Mo材料(Ce0.9Nd0.1)1-xMoxO2(x=0.02)的总电导率和晶界电导率分别为2.42和3.96 S·m-1.  相似文献   

9.
采用溶胶凝胶法制备了La0.7Sr0.3Cr1-xMnxO3-δ(x=0.3,0.4,0.5,0.6)系列阳极粉体。在1000℃下焙烧后,XRD结果显示粉体物相为单一的钙钛矿相。制备以La0.7Sr0.3Cr1-xMnxO3-δ为阳极,Ce0.8Sm0.2O1.9(SDC)为电解质,Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC复合阴极的电解质支撑型固体氧化物燃料单电池。由扫描电子显微镜(SEM)观察表明单电池电解质致密,阳极孔径分布均匀,厚度约为20μm,多孔阴极厚度为10μm。采用直流四电极法测试以La0.7Sr0.3Cr0.5Mn0.5O3-δ为阳极用湿氢气作燃料时在800℃下获得最大输出功率为232.84 mW.cm-2,短路电流为0.92 A.cm-2。  相似文献   

10.
 采用柠檬酸法合成了 BaCeO3 和掺杂 Y3+的 BaCe0.9Y0.1O3-δ 复合氧化物, 以 Ru3(CO)12 为前体, 利用浸渍法制备了 Ru/BaCeO3 和 Ru/BaCe0.9Y0.1O3-δ 催化剂. 通过 X 射线衍射、扫描电镜和透射电镜技术对样品进行了表征, 并在固定床反应器中考察了催化剂的氨合成反应活性. 结果表明, 载体 BaCeO3 的稳定性优于 BaCe0.9Y0.1O3-δ, 但 Ru/BaCe0.9Y0.1O3-δ 催化剂的氨合成活性明显高于 Ru/BaCeO3, 在 3.0 MPa, 15 000 h1, 425 oC 反应时, Ru/BaCe0.9Y0.1O3-δ 催化剂上氨合成反应速率达到 432.5 ml/(g•h), 是 Ru/BaCeO3 催化剂的 1.6 倍. 这种活性和稳定性的显著差异来自载体中 Ce4+ 与 Ru 纳米粒子间的电子作用.  相似文献   

11.
用高温固相反应法合成了非化学计量组成的Ba1.05Ce0.8Ho0.2O3-α固体电解质,用粉末X-射线衍射方法鉴定了其晶体结构.用交流阻抗谱技术研究了材料在600℃~1000℃下、湿润氢气和湿润空气气氛中的导电性,测定了其氢–空气燃料电池性能,并与BaCe0.8Ho0.2O3-α的电性能进行了比较.结果表明,Ba1.05Ce0.8Ho0.2O3-α材料为钙钛矿型斜方晶单相结构.在600℃~1000℃温度范围内、湿润氢气和湿润空气气氛中,该材料的电导率高于BaCe0.8Ho0.2O3-α的电导率(1000℃下,在湿润的氢气气氛中它们的电导率分别为2.66×10-2和1.94×10-2 S·cm-1;在湿润的空气气氛中分别为4.31×10-2和1.93×10-2 S·cm-1);以该材料为固体电解质的氢–空气燃料电池性能优于以BaCe0.8Ho0.2O3-α为固体电解质的氢–空气燃料电池性能(1000℃下,它们的最大氢–空气燃料电池输出功率密度分别为139.8和85.8 mW·cm-2).  相似文献   

12.
采用柠檬酸溶胶-凝胶法制备了固体电解质Ce0.9Er0.1-xPrxO1.95+δ(x=0.02~0.08),利用X射线粉末衍射(XRD)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和交流阻抗谱研究了样品的微观结构和电性能.XRD结果表明,800℃煅烧的所有样品均形成了单相立方萤石结构;Raman光谱结果表明,Ce0.9Er0.05Pr0.05O1.95+δ具有氧缺位的立方萤石结构;XPS分析表明,Ce0.9Er0.05Pr0.05O1.95+δ存在氧缺位,Pr3+离子和Pr4+离子共存;AFM观测结果表明,1300℃下烧结的样品比1400℃下烧结的样品致密;交流阻抗谱结果表明,Pr掺杂量x=0.05时,Ce0.9Er0.05Pr0.05O1.95+δ的电导率最高(σ600℃=1.34×10-2S/cm,Ea=0.90 e V),比未掺杂Pr的Ce0.9Er0.1O1.95(σ600℃=8.81×10-3S/cm,Ea=0.92 e V)提高了52%,说明在Ce0.9Er0.1O1.95中适量掺杂Pr可提高材料的电导率,降低活化能.  相似文献   

13.
用高温固相反应法制备了Ba0.9La0.1Ce0.9Nd0.1O3-α质子导电性陶瓷,粉末X-射线衍射(XRD)分析表明,该陶瓷为单一钙钛矿型斜方晶结构。在500~900℃温度范围内,分别用气体浓差电池方法和交流阻抗谱技术研究了材料在不同气体气氛中的离子导电性,并与Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料的离子导电性进行了比较。结果表明,在500~900℃温度范围内、湿润氢气中,Ba0.9La0.1Ce0.9Nd0.1O3-α材料的质子迁移数为1,是一个纯的质子导体。在干燥空气中,该材料是一个氧离子和电子空穴的混合导体,氧离子迁移数为0.295~0.081,氧离子电导率高于Ba0.9Ca0.1Ce0.9Nd0.1O3-α。在湿润空气中,该材料是一个质子、氧离子和电子空穴的混合导体,质子迁移数为0.151~0.009,氧离子迁移数为0.300~0.107,质子电导率低于Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料。在氢-空气燃料电池条件下,Ba0.9La0.1Ce0.9Nd0.1O3-α材料是一个质子、氧离子和电子的混合导体,离子迁移数为0.964~0.853,离子电导率与Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料相近。  相似文献   

14.
用高温固相反应法制备了Ba0.9La0.1Ce0.7Zr0.2Nd0.1O3-α陶瓷。粉末X-射线衍射(XRD)结果表明,该材料为单一钙钛矿型BaCeO3斜方晶结构,在高温下、CO2或水蒸气气氛中具有较高的稳定性。在500~900℃温度范围内,分别用交流阻抗谱技术和气体浓差电池方法研究了材料在不同气体气氛中的离子导电特性,并与Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料的导电特性进行了比较。结果表明,在500~900℃温度范围内,干燥和湿润的氢气、氮气、空气和氧气气氛中,材料的电导率均随着温度升高和氧分压增加而增加,且材料在湿润气氛中的电导率稍高于相应的干燥气氛中的电导率(氢气气氛中则相反)。在湿润氢气中,材料的质子迁移数为1,是一个纯的质子导体;在干燥空气中,材料的氧离子迁移数为0.087~0.155,是一个氧离子与电子空穴的混合导体;在湿润空气中,材料的质子迁移数为0.001~0.004,氧离子迁移数为0.160~0.198,是一个质子、氧离子和电子空穴的混合导体。材料在干燥和湿润空气中的氧离子电导率均高于相同条件下Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料的氧离子电导率。  相似文献   

15.
采用高温固相法制备了BaCe0.8Lu0.2O3-α质子导体。运用X射线衍射仪(XRD)、扫描电镜(SEM)对该材料的物相结构、微观形貌进行了表征。在500~900℃温度范围内,应用交流阻抗谱和气体浓差电池方法研究了材料在不同气体气氛中的离子导电性和氢-空气燃料电池性能。结果表明,BaCe0.8Lu0.2O3-α材料为单一斜方晶结构,具有良好的致密性。在500~900℃温度范围内,干燥或湿润的氮气、空气和氧气中,材料的电导率随着氧分压增大稍有增大。在湿润的氢气中,材料表现为纯的质子导电性。在以该材料为固体电解质的氢-空气燃料电池条件下,材料表现为质子、氧离子和电子的混合导电性,其中离子导电性始终占主导;氢-空气燃料电池在900℃下的最大输出功率密度为92.2mW·cm-2,高于我们以前报道的BaCe0.8RE0.2O3-α(RE=Pr,Eu,Ho,Er,等)材料。  相似文献   

16.
塑性挤压成型阳极支撑管,采用真空浸涂法在阳极表面制备了均一、致密的氧化钇稳定的氧化锆电解质层,然后在电解质表面刷涂上阴极层,成功制备了阳极支撑型管状固体氧化物燃料电池.分别以氢气和氨气为燃料,考察了该管状固体氧化物燃料电池的电池性能.在800℃操作时,以氢气和氨气为燃料的电池最大输出功率密度分别为202和200 mW/cm2.表明氨气可以作为固体氧化物燃料电池的替代燃料.  相似文献   

17.
采用高温固相反应法制备了质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)。结合XRD、SEM、EIS等技术对其物相、微观形貌、稳定性及电导率进行了研究。结果表明,在1600℃烧结5h制备的质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)均能保持主相为斜方晶的钙钛矿结构。Nb的加入可明显提高烧结样品的致密性及在CO2和水蒸气气氛下的稳定性。在湿润H2/Ar(0.4%,V/V)气氛中800℃下,x=0.1样品的电导率为5.73mS·cm-1,电导活化能为0.35eV,与x=0的样品相当。  相似文献   

18.
用柠檬酸溶胶-凝胶法制备了Ce0.8Sm0.2O2-δ(SDC)和Sm1.2Sr0.8Co1-xNixO4+δ(x=0.0,0.1,0.2)(SSCN)系列纳米粉体,并用热差分析、XRD粉末衍射和透射电镜方法对SSCN系列进行表征。以碳纸支撑的SSCN系列粉体为阴极、Nafion膜为电解质、碳纸支撑的NiO-SDC还原后得到的Ni-SDC粉体为阳极,以湿氢气和氮气为原料,在低温常压下研究了其在电化学合成氨中的性能。结果表明,在25~100℃和施加电压的条件下,使用SSCN系列粉体为阴极时均有氨气生成,其中Sm1.2Sr0.8Co0.9Ni0.1O4+δ作阴极时电化学合成氨的性能最佳,在80℃和0.5V时氨的产率为4.89×10-9mol/(s·cm2)。  相似文献   

19.
SrCe0.95Y0.05O3-δ是一种高温质子导体,本研究采用溶胶—凝胶法合成了 SrCe0.95Y0.05O3-δ纳米粉体,并以该粉体烧制得固体复合氧化物电解质陶瓷,测 定了其在中温区间(400-600℃)的电导率,结果表明不同气氛对其电导率有很大影 响.用该陶瓷在固态质子传导电他中常压下以氮气和氢气为原料合成了氨,并研究 了影响氨合成的关键因素,确定了合适的工作温度,在常压下480℃时氨的产率可 达10^-9mol/(s.cm^-2)以上.  相似文献   

20.
以高温固相反应法制备了BaCe0.gZr0.1Lao1O3-α陶瓷,用粉末X-射线衍射(XRD)和扫描电镜(SEM)对其晶体结构和断面形貌进行了表征.以陶瓷材料为固体电解质、多孔性铂为电极,用交流阻抗谱技术测定了材料在500~900℃下不同气体气氛中的电导率;用气体浓差电池方法测定了材料在于燥空气和湿润空气中的离子迁移...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号