首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific features of the superconducting state (with s and d pairing) are considered in terms of a pseudogap state caused by short-range order fluctuations of the “dielectric” type, namely, antiferromagnetic (spin density wave) or charge density wave fluctuations, in a model of the Fermi surface with “hot points.” A set of recurrent Gor’kov equations is derived with inclusion of all Feynman diagrams of a perturbation expansion in the interaction between an electron and short-range order fluctuations causing strong scattering near hot points. The influence of nonmagnetic impurities on superconductivity in such a pseudogap state is analyzed. The critical temperature for the superconducting transition is determined, and the effect of the effective pseudogap width, correlation length of short-range-order fluctuations, and impurity scattering frequency on the temperature dependence of the energy gap is investigated.  相似文献   

2.
Peculiarities of the superconducting state (s and d pairing) are considered in the model of the pseudogap state induced by short-range order fluctuations of the dielectric (AFM (SDW) or CDW) type, which is based on the model of the Fermi surface with “hot spots.” A microscopic derivation of the Ginzburg-Landau expansion is given with allowance for all Feynman diagrams in perturbation theory in the electron interaction with short-range order fluctuations responsible for strong scattering in the vicinity of hot spots. The superconducting transition temperature is determined as a function of the effective pseudogap width and the correlation length of short-range order fluctuations. Similar dependences are derived for the main parameters of a superconductor in the vicinity of the superconducting transition temperature. It is shown, in particular, that the specific heat jump at the transition point is considerably suppressed upon a transition to the pseudogap region on the phase diagram.  相似文献   

3.
The correlation between the density ρs(T→0) of superconducting condensate and the superconducting transition temperature T c in underdoped HTSC systems is considered. It is shown that the linear relation between ρs(0) and T c observed in some experiments can easily be interpreted in the framework of the conventional Bardeen-Cooper-Schrieffer (BCS) model without invoking any exotic superconductivity models.  相似文献   

4.
The mechanism of hole carrier generation is considered in the framework of a model assuming the formation of negative U centers (NUCs) in HTSC materials under doping. The calculated dependences of carrier concentration on the doping level and temperature are in quantitative agreement with experiment. An explanation is proposed for the pseudogap and 60 K phases in YBa2Cu3O6+δ. It is assumed that a pseudogap is of superconducting origin and arises at temperature T* > Tc∞ > Tc in small nonpercolating clusters as a result of strong fluctuations in the occupancy of NUCs (Tc∞ and Tc are the superconducting transition temperatures of an infinitely large and finite NUC clusters, respectively). The T*(δ) and Tc(δ) dependences calculated for YBa2Cu3O6+δ correlate with experimental dependences. In accordance with the model, the region between T*(δ) and Tc(δ) is the range of fluctuations in which finite nonpercolation clusters fluctuate between the superconducting and normal states due to NUC occupancy fluctuations.  相似文献   

5.
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ? Tc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.  相似文献   

6.
The renormalizations of the fermionic spectrum are considered within the framework of the t-J* model taking into account three-center interactions (H(3)) and magnetic fluctuations. Self-consistent spin dynamics equations for strongly correlated fermions with three-center interactions were obtained to calculate quasi-spin correlators. A numerical self-consistent solution to a system of ten equations was obtained to show that, in the nearest-neighbor approximation, simultaneously including H(3) and magnetic fluctuations at n>n1 (n1 ≈ 0.72 for 2t/U = 0.25) caused qualitative changes in the structure of the energy spectrum. A new Van Hove singularity is then induced in the density of states, and an additional maximum appears in the Tc(n) concentration dependence of the temperature of the transition to the superconducting phase with order parameter symmetry of the d x 2?y2 type.  相似文献   

7.
The fluctuations of the number of particles in a subvolumeΩ′Ω in the superconducting state are investigated in the framework of the strong coupling limit of the BCS-theory. It is shown for values ofΩ′?Ω these fluctuations are proportional to the subvolumeΩ′ and agree for theseΩ′-values with the density fluctuations of the quasivacuum state.  相似文献   

8.
In the first part of the paper we derive expressions of the Ginzburg-Landau (GL) type for the local tunneling density of states of superconducting alloys. These expressions are quite generally applicable at high excitation energies. One can see immediately that the density of states,N(r, ω), at any positionr and high energiesω is always larger than the local BCS density of states if the space dependence of the order parameter is governed by the GL-equation. This effect is largest for long mean free pathsl. In the second part of the paper we calculate the spatial average of the density of states,¯N, at all energiesω for a lattice of vortex lines in a magnetic field slightly below the upper critical field. The resulting curve of [¯N? N(0)]/N(0) versus co shows no gap and has a zero at about the gap value in zero field. Its value at ω=0 depends onl like ln(ξ0/l) for l?ξ0 [N(0) denotes the normal density of states, and ξ0 is the BCS coherence length].  相似文献   

9.
We have examined temperature changes of the light refraction, birefringence, dielectric permittivity, and dielectric hysteresis loops in Sr1 – xCaxTiO3 single crystals with x = 0.014 (SCT-1.4). The dielectric properties of Sr1 – xCaxTiO3 with x = 0.007 (SCT-0.7) have been studied. We have performed ab initio calculations of equilibrium structures and total energies for three low-temperature phases of SrTiO3 and CaTiO3, based on which we have determined an expected symmetry of the ground state of their solid solution and spontaneous polarization directions in a calcium-induced ferroelectric phase in Sr1 – xCaxTiO3. In SCT-1.4, we have separated a spontaneous contribution to the light refraction, which arises due to the spontaneous electrooptical effect caused by the spontaneous polarization and its fluctuations. From the spontaneous contribution to the light refraction, based on a previously developed our phenological approach, we have quantitatively determined for the first time the values and temperature dependences of root-mean-square fluctuations of the order parameter—the polarization Psh = 〈P fl 2 1/2(short-range, local polar order) in the ferroelectric phase. From optical and dielectric measurements in SCT-1.4, the average value of spontaneous polarization Ps (the contribution from the long-range order) has been determined. We have estimated the values of Psh and Ps, which characterize the short- and long-range orders in the ferroelectric phase of SCT-0.7. Separate determination of the values and temperature dependences of Ps and Psh (which considerably exceeds the value of Ps in the ordered phase) has allowed us to reveal on a quantitative level new particular features of the formation of the induced polar phase in Sr1 – xCaxTiO3.  相似文献   

10.
We have proposed and developed a microscopic model of depinning (escape) of a multiquantum vortex in a superconductor with a cylindrical nonconducting cavity with the transverse size smaller than or on the order of the superconducting coherence length ξ0 at zero temperature. The spectrum of subgap quasiparticle excitations in two- and three-quantum vortices trapped by a cylindrical cavity has been calculated in the quasiclassical approximation. It is shown that the transformation of the spectrum is accompanied by break of anomalous spectral branches due to normal reflection of quasiparticles from the surface of a defect. A microscopic (spectral) criterion for multiquantum vortex pinning has been proposed; according to this criterion, the multiquantum vortex can be trapped in the cavity during the formation of a minigap in the elementary excitation spectrum near the Fermi level. Self-consistent calculations of density of states N(r, ε) for two- and three-quantum vortices trapped by a cylindrical cavity of radius on the order of ξ0 have been performed using quasiclassical Eilenberger equations. In the pure limit and for low temperatures T ? T c , peculiarities observed in the N(r, ε) distribution reflect the presence of M anomalous spectral branches in the M-quantum vortex and confirm the correctness of the spectral criterion of pinning (depinning) of a multiquantum vortex.  相似文献   

11.
We analyze the peculiarities of the superconducting state (s- and d-wave paring) in the model of the pseudogap state induced by Heisenberg antiferromagnetic short-range order spin fluctuations. The model is based on the pattern of strong scattering near hot spots at the Fermi surface. The analysis is based on the microscopic derivation of the Ginzburg-Landau expansion with the inclusion of all Feynman diagrams of perturbation theory for the interaction of an electron with short-range order fluctuations and in the ladder approximation for the scattering by normal (nonmagnetic) impurities. We determine the dependence of the critical superconducting transition temperature and other superconductor characteristics on the pseudogap parameters and the degree of impurity scattering. We show that the characteristic shape of the phase diagram for high-temperature superconductors can be explained in terms of the model under consideration.  相似文献   

12.
We consider the coexistence of antiferromagnetism and d-wave superconductivity, motivated by what one observes in the quasi-two dimensional organic salts. We study an electronic model that approximates some features of the Hubbard model, e.g., a repulsion that promotes local moments and Neel order, and an attractive intersite density–density coupling that promotes d-wave superconductivity. Staying at half-filling and a fixed attractive interaction we probe the effect of varying repulsion, using mean field theory for the ground state but retaining the full O(3) × U(1) spectrum of classical fluctuations at finite temperature. The ground state is superconducting at weak repulsion, a Neel ordered insulator at large repulsion, and a coexistence of the two orders in the intermediate regime. We observe four distinct kinds of thermal behaviour depending on the strength of repulsion. Starting with weak repulsion these are, first, a d-wave superconductor renormalised by magnetic fluctuations, second, a d-wave state transiting to an antiferromagnetic insulator and then to the normal state, third, a coexistent state transiting to the antiferromagnetic insulator and then the normal state, and, fourth, a Neel ordered insulator with weak pairing fluctuations. The low temperature state is either “nodal” or gapped, due to long range order, and the low energy spectral weight generally increases monotonically with temperature. At intermediate repulsion, however, the transition from the d-wave state to Neel antiferromagnet causes a loss of low energy weight which is gradually regained only at high temperature.  相似文献   

13.
A microscopic theory of superconductivity in the extended Hubbard model which takes into account the intersite Coulomb repulsion and electron-phonon interaction is developed in the limit of strong correlations. The Dyson equation for normal and pair Green functions expressed in terms of the Hubbard operators is derived. The self-energy is obtained in the noncrossing approximation. In the normal state, antiferromagnetic short-range correlations result in the electronic spectrum with a narrow bandwidth. We calculate superconducting T c by taking into account the pairing mediated by charge and spin fluctuations and phonons. We found the d-wave pairing with high-T c mediated by spin fluctuations induced by the strong kinematic interaction for the Hubbard operators. Contributions to the d-wave pairing coming from the intersite Coulomb repulsion and phonons turned out to be small.  相似文献   

14.
M. Yu. Kagan 《JETP Letters》2016,103(11):728-738
In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn–Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive-U Hubbard model and Shubin–Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with TC of the order of 100 K) we should proceed to the t–J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with TC of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron–phonon interaction. These mechanisms arise in the attractive-U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal–Eliashberg strong coupling theory or even Fermi–Bose mixture theory of Ranninger et al. and its generalizations.  相似文献   

15.
Near the critical temperature of a superconducting transition, the energy of the threshold perturbation δFthr that transfers a superconducting bridge to a resistive state at a current below the critical current Ic has been determined. It has been shown that δFthr increases with a decrease in the length of a bridge for short bridges with lengths L < ξ (where ξ is the coherence length) and is saturated for long bridges with L ? ξ. At certain geometrical parameters of banks and bridge, the function δFthr(L) at the current I → 0 has a minimum at L ~ (2–3)ξ. These results indicate that the effect of fluctuations on Josephson junctions made in the form of short superconducting bridges is reduced and that the effect of fluctuations on bridges with lengths ~(2–3)ξ is enhanced.  相似文献   

16.
A formula for computing the temperature dependence of the London penetration depth of a magnetic field in the regime of coexistence of charge density waves and superconductivity has been proposed taking into account the dependence of both order parameters on the wave vector. It has been shown that an anomalously high diamagnetic response of the system and a finite value of the superconducting current persist even at T cTT CDW.  相似文献   

17.
B Singh  P S Tarsikka  L Singh 《Pramana》2002,59(4):653-661
Studies of dielectric relaxation and ac conductivity have been made on three samples of sodium tungsten phosphate glasses over a temperature range of 77–420 K. Complex relative permitivity data have been analyzed using dielectric modulus approach. Conductivity relaxation frequency increases with the increase of temperature. Activation energy for conductivity relaxation has also been evaluated. Measured ac conductivity (σm(ω)) has been found to be higher than σdc at low temperatures whereas at high temperature σm(ω) becomes equal to σdc at all frequencies. The ac conductivity obeys the relation σac(ω)=Aω S over a considerable range of low temperatures. Values of exponent S are nearly equal to unity at about 78 K and the values decrease non-linearly with the increase of temperature. Values of the number density of states at Fermi level (N(E F)) have been evaluated at 80 K assuming values of electron wave function decay constant α to be 0.5 (Å)?1. Values of N(E F) have the order 1020 which are well within the range suggested for localized states. Present values of N(E F) are smaller than those for tungsten phosphate glasses.  相似文献   

18.
The heat capacity of Zr70Pd30 and Zr80Pt20 icosahedral quasicrystals and their amorphous counterparts is studied in the temperature range 1.5–500 K in order to establish a correlation between the short-range atomic order and the physical properties of these compounds. A comparison of the data made it possible to reveal changes in the vibrational spectra within the low-and high-energy ranges, as well as in the density of states, superconducting characteristics, electron-phonon interaction, and anharmonicity of the lattice thermal vibrations and to calculate the main average frequencies (moments) characterizing the vibrational spectra. The lower superconducting transition temperature T c of the quasicrystals as compared to that of the amorphous counterparts can be associated with the decrease in the density of states on the Fermi surface, the hardening of the phonon spectrum, and the weakening of the electron-phonon coupling.  相似文献   

19.
The scattering cross section and the Doppler spectrum for electromagnetic waves scattered by the electron density fluctuations of a plasma, where the mean kinetic temperature of the electronsT e may differ from that of the ionsT i , has been obtained among others byFejer, Buneman, Renau, Camnitz andFlood, andSalpeter. These authors use different methods of approach to calculate the autocovariance of the electron number-density fluctuations (from the mean) and then obtain the scattering cross section. Because of the differing results, the methods, concepts, and derivations of the scattering cross section are carefully examined in this paper. It is shown that the short-time dynamical considerations incorporated in the formulation of the statistical theory of the electron number-density fluctuations of the plasma as used by several authors (for instanceFejer, Buneman, Salpeter,) leads to results of limited validity. In addition, a fundamental error in calculating the electron density fluctuations leads these latter authors to an incorrect scattering cross section. The theory of scattering of electromagnetic waves from a plasma, where the electrons arenot in thermal equilibrium with the ions but statistical equilibrium exists, is developed in a general way. The covariance of the number-density fluctuations from the mean of the charged species of the plasma and the scattering cross sectionσ(q) are obtained. In particular it is shown that for a wavelength λ much greater than the effective Debye lengthd, the backscattering cross section increases and approaches complete incoherent scattering asT e /T i increases. This result is explained by noting that in the case of thermal equilibrium, the predicted value of the back-scattering cross section is smaller than that of the backscattering cross section from completely uncorrelated electron density fluctuations because the electrostatic interaction between the charged particles of the plasma, which is a function ofT e andT i , introduces a certain amount of organization in otherwise completely uncorrelated electron density fluctuations. When the mean temperature of the electrons increases relative to that of the ions, the organization introduced in the fluctuations diminishes because of the increasing thermal agitation of the electrons relative to that of the ions, and the backscattering process approaches that of incoherent backscattering (Thomson-type scattering). The spectrum function of incoherent scattering of electromagnetic waves from a nonequilibrium plasma is obtained and some cases of current interest are plotted.  相似文献   

20.
An analysis is made of characteristics of the superconducting state (s-and d-pairing) using a simple, exactly solvable model of the pseudogap state produced by fluctuations of the short-range order (such as antiferromagnetic) based on a Fermi surface model with “hot” sections. It is shown that the superconducting gap averaged over these fluctuations is nonzero at temperatures higher than the mean-field superconducting transition temperature T c over the entire sample. At temperatures T > T c superconductivity evidently exists in isolated sections (“ drops”). Studies are made of the spectral density and the density of states in which superconducting characteristics exist in the range T > T c however, in this sense the temperature T = T c itself is no different in any way. These anomalies show qualitative agreement with various experiments using underdoped high-temperature superconducting cuprates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号