首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissipative particle dynamics is used to extract the material parameters (bending and area stretch moduli) of a bilayer membrane patch. Some experiments indicate that the area stretch modulus of lipid vesicles varies little as the chain length of the lipids composing the bilayer increases. Here we show that making the interactions between the hydrophilic head groups of the model amphiphiles proportional to the hydrophobic tail length reproduces the above result for the area stretch modulus. We also show that the area stretch modulus of bilayers composed of amphiphiles with the same number of tail beads but with asymmetric chains is less than that of bilayers with symmetric chains. The effects on the bilayer density and lateral stress profiles of changes to the amphiphile architecture are also presented.  相似文献   

2.
Cellular membranes can take on a variety of shapes to assist biological processes including endocytosis. Membrane-associated protein domains provide a possible mechanism for determining membrane curvature. We study the effect of tethered streptavidin protein crystals on the curvature of giant unilamellar vesicles (GUVs) using confocal, fluorescence, and differential interference contrast microscopy. Above a critical protein concentration, streptavidin domains align and percolate as they form, deforming GUVs into prolate spheroidal shapes in a size-dependent fashion. We propose a mechanism for this shape transformation based on domain growth and jamming. Osmotic deflation of streptavidin-coated GUVs reveals that the relatively rigid streptavidin protein domains resist membrane bending. Moreover, in contrast to highly curved protein domains that facilitate membrane budding, the relatively flat streptavidin domains prevent membrane budding under high osmotic stress. Thus, crystalline streptavidin domains are shown to have a stabilizing effect on lipid membranes. Our study gives insight into the mechanism for protein-mediated stabilization of cellular membranes.  相似文献   

3.
Recent studies on the deformation of lipid vesicles which is a simple model of biological membranes, and the factors that influence it are reviewed. In homogeneous vesicles, the deformation from spherical to various shapes was observed by adjusting the temperature and the osmotic pressure. This is mainly explained by a balance between the bending elasticity and the area difference energy. In phase separated vesicles, the effect of line tension makes a significant contribution to the deformation. In addition, asymmetric distribution of lipid molecules in bilayers caused by lipid sorting determines deformation behaviors including budding, pore, tube, adhesion, and self-reproduction. The change in membrane curvature due to shielding of lipid charges by electrolytes, proteins, peptides, and solid nanoparticles was also reviewed.  相似文献   

4.
Novel method for measuring the adhesion energy of vesicles   总被引:1,自引:0,他引:1  
Adhering vesicles with osmotically stabilized volume are studied with Monte Carlo simulations and optical microscopy. The simulations are used to determine the dependence of the adhesion area on the vesicle volume, the surface area, the bending rigidity, the adhesion energy per membrane area, and the adhesion potential range. The simulation results lead to a simple functional expression that is supplemented by a correction term for gravity effects. The obtained equation provides a new tool to analyze optical microscopy data and, thus, to measure the adhesion energy per area by analyzing the geometry of the adhering vesicle. The method can be applied in the weak and ultra-weak adhesion regime, where the adhesion energy per area is below 10(-6) J/m(2). By comparing the shapes of adhering vesicles with different reduced volumes, the bending rigidity can be estimated as well. The new approach is applied to experimental data for lipid vesicles on (i) an untreated and (ii) a monolayer-coated glass surface, providing ultra-weak and weak adhesion strength, respectively.  相似文献   

5.
The term “facial amphiphiles” was originally used for molecules with the hydrophilic and hydrophobic groups located on two opposite faces, rather than at two ends as in the more conventional head/tail amphiphiles. Recent research has expanded this concept and created facially amphiphilic molecules with diverse topologies and intriguing properties. The geometry and the distribution of hydrophilic/hydrophobic groups on facial amphiphiles were key parameters influencing their properties. Intermolecular aggregation of facial amphiphiles generated a range of structures including dimers, vesicles, nanoclusters, and nanotubes. Intramolecular aggregation of facially amphiphilic repeat units in a molecule, on the other hand, allowed the molecule to respond to environmental stimuli through controlled conformational changes.  相似文献   

6.
We have studied the effect of shape of an amphiphilic molecule on micellization properties by carrying out stochastic molecular dynamics simulation on a bead-spring model of amphiphiles for several sizes of hydrophilic head group with a fixed hydrophobic tail length. Our studies show that the effect of geometry of an amphiphile on shape and cluster distribution of micelles is significant. We find the critical micelle concentration increases with the increasing size of the hydrophilic head. We demonstrate that the onset of micellization is accompanied by (i) a peak in the specific heat as found earlier in the simulation studies of lattice models, and (ii) a peak in the characteristic relaxation time of the cluster autocorrelation function. Amphiphiles with larger hydrophilic head form smaller micelles with sharper cluster distribution. Our studies are relevant to the controlled synthesis of nanostructures of desired shapes and sizes using self-assembling properties of amphiphiles.  相似文献   

7.
Micropipet aspiration of phase-separated lipid bilayer vesicles can elucidate physicochemical aspects of membrane fluid phase coexistence. Recently, we investigated the composition dependence of line tension at the boundary between liquid-ordered and liquid-disordered phases of giant unilamellar vesicles obtained from ternary lipid mixtures using this approach. Here we examine mechanical equilibria and stability of dumbbell-shaped vesicles deformed by line tension. We present a relationship between the pipet aspiration pressure and the aspiration length in vesicles with two coexisting phases. Using a strikingly simple mechanical model for the free energy of the vesicle, we predict a relation that is in almost quantitative agreement with experiment. The model considers the vesicle free energy to be proportional to line tension and assumes that the vesicle volume, domain area fraction, and total area are conserved during aspiration. We also examine a mechanical instability encountered when releasing a vesicle from the pipet. We find that this releasing instability is observed within the framework of our model that predicts a change of the compressibility of a pipet-aspirated membrane cylinder from positive (i.e., stable) to negative (unstable) values, at the experimental instability. The model furthermore includes an aspiration instability that has also previously been experimentally described. Our method of studying micropipet-induced shape transitions in giant vesicles with fluid domains could be useful for investigating vesicle shape transitions modulated by bending stiffness and line tension.  相似文献   

8.
Many common amphiphiles spontaneously self-assemble in aqueous solutions, forming membranes and unilamellar vesicles. While the vesicular membranes are bilayers, with the hydrophilic moieties exposed to the solution, the structure formed by amphiphiles at the oil–water (i.e., alkane–water) interfaces, such as the surface of an oil droplet in water, is typically a monolayer. It has recently been demonstrated that these monolayers and bilayers may crystallize on cooling, with the thermodynamic conditions for this transition set by the geometry of the constituent molecules. While a planar hexagonal packing motif is particularly abundant in these crystals, a hexagonal lattice is incompatible with a closed-surface topology, such as a closed vesicle or the surface of a droplet. Thus, (at least) 12 five-fold defects form, giving rise to a complex interplay between the stretching and the bending energies of these two-dimensional crystals; in addition, a central role is also played by the interfacial tension. This interplay, part of which has been theoretically studied in the past, gives rise to a range of unexpected and counterintuitive phenomena, such as the recently-observed temperature-tunable formation of stable liquid polyhedra, and a tail growing and droplet-splitting akin to the spontaneous emulsification effect.  相似文献   

9.
Self-organization in aqueous systems based on ionic surfactants, and their mixtures, can be broadly understood by a balance between the packing properties of the surfactants and double-layer electrostatic interactions. While the equilibrium properties of micellar systems have been extensively studied and are understood, those of bilayer systems are less well characterized. Double-chained and pseudodouble-chained (or catanionic) surfactants are among the amphiphiles which typically form bilayer structures, such as lamellar liquid–crystalline phases and vesicles. In the past 10–15 years, an experimental effort has been made to get deeper insight into their aggregation patterns. With the double-chained amphiphiles, by changing counterion, adding salt or adding anionic surfactant, there are possibilities to depart from the bilayer aggregate in a controlled manner. This is demonstrated by several studies on the didodecyldimethylammonium bromide surfactant. Mixtures of cationic and anionic surfactants yield the catanionics, surfactants of the swelling type, and also show a rich phase behavior per se. A variety of liquid–crystalline phases and, in dilute regimes, equilibrium vesicles and different micellar shapes are often encountered. Phase diagrams and detailed structural studies, based on several techniques (NMR, microscopy and scattering methods), have been reported, as well as theoretical studies. The main features and conclusions emerging from such investigations are presented.  相似文献   

10.
Monolayers of two isomeric branched chain phosphatidyl cholines at the air/water interface have been studied by means of fluorescence microscopy. The lipids differ in the position of the branched chain at the glycerol backbone and carry three chains per headgroup of almost equal length. Most qualitative features of the compression isotherms are similar except a difference of 4 Å2/molecule in the minimum molecular area at high lateral pressures. This indicates a more condensed solid phase of compound C2 and is also reflected in the shapes of domains observed in the LE/LC phase coexistence range: domains with sharp edges and a mostly hexagonal shape are formed. On the other hand, the compound C1 with a larger limiting molecular area exhibits a smooth domain boundary and a shape instability as theoretically predicted.  相似文献   

11.
Exploiting the orthogonal molecular interactions of natural (phospholipids) and synthetic (mono-allyloxylated cucurbit[7]uril) amphiphiles to form their own vesicles, the formation of two different types of compartments in a self-sorted manner mimicking cellular compartments is demonstrated. Even after simultaneous extrusion of both vesicles through small pore membranes, which transformed them into smaller vesicles, both vesicles were not fused but still appeared as independent compartments in sucrose solution. The simultaneous use of natural and synthetic amphiphiles, forming independent compartments, holds great potential for in-depth investigation of self-sorted multi-compartments and their structures as prototype cells.  相似文献   

12.
This paper reports a comprehensive study on the synthesis and self-assembly of two model series of molecular shape amphiphiles, namely, hydrophilic [60]fullerene (AC(60)) tethered with one or two polystyrene (PS) chain(s) at one junction point (PS(n)-AC(60) and 2PS(n)-AC(60)). The synthesis highlighted the regiospecific multiaddition reaction for C(60) surface functionalization and the Huisgen 1,3-dipolar cycloaddition between alkyne functionalized C(60) and azide functionalized polymer to give rise to shape amphiphiles with precisely defined surface chemistry and molecular topology. When 1,4-dioxane/DMF mixture was used as the common solvent and water as the selective solvent, these shape amphiphiles exhibited versatile self-assembled micellar morphologies which can be tuned by changing various parameters, such as molecular topology, polymer tail length, and initial molecular concentration, as revealed by transmission electron microscopy and light scattering experiments. In the low molecular concentration range of equal or less than 0.25 (wt) %, micellar morphology of the series of PS(n)-AC(60) studied was always spheres, while the series of 2PS(n)-AC(60) formed vesicles. Particularly, PS(44)-AC(60) and 2PS(23)-AC(60) are synthesized as a topological isomer pair of these shape amphiphiles. PS(44)-AC(60) formed spherical micelles while 2PS(23)-AC(60) generated bilayer vesicles under identical conditions. The difference in the self-assembly of PS(n)-AC(60) and 2PS(n)-AC(60) was understood by the molecular shape aspect ratio. The stretching ratio of PS tails decreased with increasing PS tail length in the spherical micelles of PS(n)-AC(60), indicating a micellar behavior that changes from small molecular surfactant-like to amphiphilic block copolymer-like. For the series of PS(n)-AC(60) in the high molecular concentration range [>0.25 (wt) %], their micellar morphological formation of spheres, cylinders, and vesicles was critically dependent upon both the initial molecular concentration and the PS tail length. On the other hand, the series of 2PS(n)-AC(60) remained in the state of bilayer vesicles in the same concentration range. Combining both of the experimental results obtained in the low and high molecular concentrations, a systematic morphological phase diagram was constructed for the series of PS(n)-AC(60) with different PS tail lengths. The versatile and concentration-sensitive phase behaviors of these molecular shape amphiphiles are unique and have not been systematically explored in the traditional surfactants and block copolymers systems.  相似文献   

13.
We describe the synthesis and preliminary physicochemical and biological assessments of a new class of nonionic hybrid hydrofluoro amphiphiles derived from tris(hydroxymethyl)aminomethane (THAM). The synthesis of the hydrophobic tail of these amphiphiles is based on the preparation of an asymmetrical hydrofluorocarbon derivative containing an ethyl segment, a fluorocarbon core, and an ethyl thiol moiety. This molecule led to either THAM galactosylated monoadducts or telomers. These amphiphiles exhibit neither detergency toward cell membranes nor membrane protein denaturation.  相似文献   

14.
Strong exciton coupling around the absorption band of monomeric dyes was induced by helical bilayer membranes formed from various L-glutamic acid-derived amphiphiles which contain three amides per molecule. The mirror-image of the circular dichroism spectra was observed by the corresponding D-isomers. No similar induction was observed by the corresponding ester-type amphiphiles which could not produce helices. It is assumed that dyes are helically arranged on helical bilayer membranes, resulting in an induction of chirality even in monomeric dyes.  相似文献   

15.
In an attempt to relate the geometry of glycolipid assemblies with molecular packing constraints, the surface areas per molecule for straight and branched-chain alkyl glycosides with varying chain length are calculated. Effects of temperature, water content, sugar size and paraffin chain length are analysed based on closest packing assumption. The results show a continuous increase of the interface between the hydrophilic and the hydrophobic domain per molecule with growing dominance in bulkiness of either domain, until it reaches a maximum in hexagonal phases. The surface area per molecule, on the other hand, exhibits a sudden jump upon the phase transition from a lamellar to a hexagonal phase, reflecting different values of the packing parameter in both assemblies. This increase is primarily based on the assembly, rather than on molecule-based domain sizes. Therefore, estimations of molecular region sizes can serve only to determine the principal ability of compounds to form certain phases, but not predict the actual phase exhibited under given conditions. Within straight-chain glycosides the surface area per molecule is practically constant, whereas it increases with growing chain length for branched-chain analogues. This can be explained with differences in the volume–length ratio of the hydrocarbon domain.  相似文献   

16.
Dissipative Particle Dynamics has been used to investigate the different morphology of polymer nanocomposites. Such a study was addressed to the definition of a suitable tool for understanding the distribution of oleic acid (OA) capped nanoparticles embedded into poly-methylmethacrylate (PMMA) matrix for the formation of nanocomposite materials. In particular, simulations of PMMA/OA mixtures at different composition have exhibited the self-assembly of amphiphiles to form separated nanosized domains with different morphologies going from spheres, to tubules up to the formation of continuous planar sheets as the OA composition increases. On the other hand, simulations carried out on nanocomposite systems have shown that NPs do not perturb the observed phase behaviour of PMMA/OA mixtures. In fact, at low OA compositions nanoparticles are confined in the spherical lipid domains to form NP clusters, while at high OA composition NPs appear homogeneously distributed in the continuous lipid domain.  相似文献   

17.
Binary mixtures of amphiphiles in solution can self-assemble into a wide range of structures when the two species individually form aggregates of different curvatures. A specific example of this is seen in solutions of lipid mixtures where the two species form lamellar structures and spherical micelles, respectively. Here, vesicles connected by threadlike micelles can form in a narrow concentration range of the sphere-forming lipid. We present a study of these structures based on self-consistent field theory (SCFT), a coarse-grained model of amphiphiles. First, we show that the addition of sphere-forming lipid to a solution of lamella-former can lower the free energy of cylindrical, threadlike micelles and hence encourage their formation. Next, we demonstrate the coupling between composition and curvature; specifically, that increasing the concentration of sphere-former in a system of two bilayers connected by a thread leads to a transfer of amphiphile to the thread. We further show that the two species are segregated within the structure, with the concentration of sphere-former being significantly higher in the thread. Finally, the addition of larger amounts of sphere-former is found to destabilize the junctions linking the bilayers to the cylindrical micelle, leading to a breakdown of the connected structures. The degree of segregation of the amphiphiles and the amount of sphere-former required to destabilize the junctions is shown to be sensitive to the length of the hydrophilic block of the sphere-forming amphiphiles.  相似文献   

18.
合成了系列单链含2,7-取代萘刚性生色基的双亲化合物CnNaph(2,7)C6N+(n=4,7,10,12,16),分别用透射电镜、1HNMR和DSC观测了该系列双亲物在稀溶液中的聚集形态,研究了聚集体内的分子运动和凝胶态到液晶态的相变.结果表明,当尾链n≥7时,该系列化合物在稀溶液中自组织成双分子层排列的囊泡,当n=4时聚集体无确定形态.  相似文献   

19.
The self-assembly of cationic and anionic amphiphile mixtures into vesicles in aqueous media was studied using two different systems: (i) decanoic acid and trimethyldecylammonium bromide and (ii) hexadecanedioic acid (a simple bola-amphiphile) and trimethyldecylammonium bromide. The resulting vesicles with varying amphiphile ratios were characterized using parameters such as the critical vesicle concentration, pH sensitivity, and encapsulation efficiency. We also produced and observed giant vesicles from these mixtures using the electroformation method and confocal microscopy. The mixed catanionic vesicles were shown to be more stable than those formed by pure fatty acids. Those containing bola-amphiphile even showed the encapsulation of a small hydrophilic solute (8-hydroxypyrene-1,3,6-trisulfonic-acid), suggesting a denser packing of the amphiphiles. Compression and kinetics analysis of monolayers composed of these amphiphiles mixtures at the air/water interface suggests that the stabilization of the structures can be attributed to two main interactions between headgroups, predominantly the formation of hydrogen bonds between protonated and deprotonated acids and the additional electrostatic interactions between ammonium and acid headgroups.  相似文献   

20.
Label-free imaging mass spectrometry is utilized the first time to study lipid-lipid interactions in a model membrane system. Ternary lipid mixtures of cholesterol (CH), sphingomyelin (SM), and phosphatidylcholine (PC) on supported Langmuir-Blodgett films are investigated as a mimic of the cellular membrane. The unique chemical specificity and imaging capability allow identification and localization of each lipid molecule in the membranes. The SM and PC in each ternary mixture vary in their acyl chain saturation with both, either, or neither one double bonded at the same position of their acyl chain. For the ternary mixtures with SM and PC both saturated or unsaturated, all the lipids are evenly distributed in the molecule-specific images. However, domain structures were observed for the two mixtures with either SM or PC unsaturated. In both films, the saturated lipid, whether it is SM or PC, colocalized with CH while the unsaturated lipid was excluded from the CH domains. These results strongly suggest that acyl chain saturation, rather than the specific interactions between SM and CH, is the dominating factor for SM colocalization with CH in the raft areas of the cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号