首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple model of branched polymers in confined space is developed. Star‐branched polymer molecules are built on a simple cubic lattice with excluded volume and no attractive interactions (good solvent conditions). A single star molecule is trapped in a network of linear polymer chains of restricted mobility. The simulations are carried out using the classical Metropolis algorithm. Static and dynamic properties of the star‐branched polymer are determined using various networks. The dependence of the longest relaxation time and the self‐diffusion coefficient on chain length and network properties are discussed and the proper scaling laws formulated. The possible mechanism of motion is discussed. The differences between the motion of star‐branched polymers in such a network are compared with the cases of a dense matrix of linear chains and regular rod‐like obstacles.  相似文献   

2.
We study the non‐uniform stretching and relaxation of a long flexible end‐anchored polymer chain of N monomers (32 ≤ N ≤ 1 024) in a uniform field B by means of an off‐lattice bead‐spring Monte Carlo model. Our simulational results for the case of a Rouse‐like polymer in the good solvent regime confirm the existence of “trumpet”‐ and “flower”‐type chain conformations, predicted recently by scaling analysis based on the notion of Pincus tensile blobs. The observed elongation of the chain and the critical fields, separating three different regimes of chain deformation, are found to obey the predicted scaling behavior. The segment density distribution matches that of a DNA molecule pulled from one end at constant velocity in a good solvent. As expected, the relaxation of the stretch to coil transition of the polymer of length N is determined by the typical Rouse time τ ∝ N2ν+1.  相似文献   

3.
Monte Carlo study of the translocation of a polymer chain through a hole   总被引:1,自引:0,他引:1  
The translocation of a polymer chain through a narrow hole in a rigid obstacle has been studied by the static Monte Carlo simulations. A modified self-avoiding walk on a cubic lattice has been used to model the polymer in an athermal solution. The entropy of the chain before, in the course, and after the translocation process has been estimated by the statistical counting method. The thermodynamic generalized forces governing the translocation have been calculated. The influence of the system geometry on the entropic barrier landscape is discussed.  相似文献   

4.
Monte Carlo simulations are presented for the static properties of highly branched polymer molecules. The molecules consist of a semiflexible backbone of hard-sphere monomers with semiflexible side chains, also composed of hard-sphere monomers, attached to either every backbone bead or every other backbone bead. The conformational properties and structure factor of this model are investigated as a function of the stiffness of the backbone and side chains. The average conformations of the side chains are similar to self-avoiding random walks. The simulations show that there is a stiffening of the backbone as degree of crowding is increased, for example, if the branch spacing is decreased or side chain length is increased. The persistence length of the backbone is relatively insensitive to the stiffness of the side chains over the range investigated. The simulations reproduce most of the qualitative features of the structure factor observed in experiment, although the magnitude of the stiffening of the backbone is smaller than in experiment.  相似文献   

5.
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths N(c) are calculated from the packing length of the chains. These are combined with a local mobility mu determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients D(c)=muN(c). We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DD(c) as a function of reduced chain length NN(c). The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.  相似文献   

6.
7.
Supramolecular polymers consist of bifunctional monomers that join and break reversibly. Supramolecular polymer solutions are often polluted by monofunctional contaminants, which drastically reduce the chain-forming capabilities of the system. Unfortunately, the monofunctional contaminants are difficult to remove due to the physical and chemical resemblance with the bifunctional counterparts. In this paper, we present a method to specifically remove the monofunctional contaminants from a supramolecular polymer solution. The general idea is to induce phase separation by decreasing the solvent quality and to remove the most dilute phase. This concept is explored by means of a recently developed Monte Carlo scheme to calculate the compositions of the coexisting liquid phases. The simulations provide a proof of principle that the proposed purification method is suitable to remove the monofunctional contaminants efficiently. The calculations indicate that, at the right experimental conditions, the vast majority of the monofunctional contaminants can be removed in this way while retaining most of the bifunctional monomers. Because of the general nature of the arguments presented here, it is to be expected that the results are applicable to a large variety of supramolecular systems. Moreover, the method is very suitable for large-scale applications because only solvent is added and no tedious chromatographic steps are required.  相似文献   

8.
A key issue in nanoscale materials and chemical processing is the need for thermodynamic and kinetic models covering colloid-polymer systems over the mesoscopic length scale (approximately 1-100 nm). We have applied Monte Carlo simulations to attractive nanoscale colloid-polymer mixtures toward developing a molecular basis for models of these complex systems. The expanded ensemble Monte Carlo simulation method is applied to calculate colloid chemical potentials (micro(c)) and polymer adsorption (gamma) in the presence of freely adsorbing Lennard-Jones (LJ) homopolymers (surface modifiers). gamma and micro(c) are studied as a function of nanoparticle diameter (sigma(c)), modifier chain length (n) and concentration, and colloid-polymer attractive strength over 0.3 < Rg/sigma(c) < 6 (Rg is the polymer radius of gyration). In the attractive regime, nanocolloid chemical potential decreases and adsorbed amount increases as sigma(c), or n is increased. The scaling of gamma with n from the simulations agrees with the theory of Aubouy and Raphael (Macromolecules 1998, 31, 4357) in the extreme limits of Rg/sigma(c). When Rg/sigma(c) is large, the "colloid" approaches a molecular size and interacts only locally with a few polymer segments and gamma approximately n. When Rg/sigma(c) is small, the system approaches the conventional colloid-polymer size regime where multiple chains interact with a single particle, and gamma approximately sigma(c)2, independent of n. In contrast, adsorption in the mesoscopic range of Rg/sigma(c) investigated here is represented well by a power law gamma approximately n(p), with 0 < p < 1 depending on concentration and LJ attractive strength. Likewise, the chemical potential from our results is fitted well with micro(c) approximately n(q)sigma(c)3, where the cubic term results from the sigma(c) dependence of particle surface area (approximately sigma(c)2) and LJ attractive magnitude (approximately sigma(c)). The q-exponent for micro(c) (micro(c) approximately n(q)) varies with composition and LJ attractive strength but is always very close to the power exponent for gamma (gamma approximately n(p)). This result leads to the conclusion that in attractive systems, polymer adsorption (and thus polymer-colloid attraction) dominates the micro(c) dependence on n, providing a molecular interpretation of the effect of adsorbed organic layers on nanoparticle stability and self-assembly.  相似文献   

9.
The properties of the interface between a polymer melt and a solid wall are studied over a wide range of temperatures by dynamic Monte Carlo simulations. It is shown that in the supercooled state near the glass transition of the melt an “interphase” forms, the structure of which is influenced by the wall. The thickness of this interphase is determined from the monomer density profile near the surface and is strongly temperature dependent. At low glass-like temperatures it is larger than the bulk radius of gyration of the chains.  相似文献   

10.
We studied the self-assembling of linear chain molecules in insoluble monolayers due to attractive interactions. We used lattice Monte Carlo simulations in a two-dimensional system. The molecules consist of segments occupying adjacent lattice sites. The head segments are confined to move along a line whereas the chain segments can arrange in a plane above the heads. Only one interaction parameter is applied. At high densities and small interaction energy the system shows percolation behavior. At moderate and small densities it can be characterized by a monotonous cluster size distribution. Self-assembling occurs at small densities for strong attractive interactions. The corresponding cluster size distributions indicate preferred cluster sizes which depend upon density and interaction strength. With increasing density the clusters grow. The internal cluster structure depends on the cluster size and the interaction parameter. The clusters tend to minimize their total energy. Molecules at cluster margins contribute less to the cluster energy and are mainly disordered. They cause that the cluster properties strongly depend on the cluster size. Large clusters only have minimum energy if the molecules in the cluster are in stretched-out conformation. With decreasing interaction strength the clusters get disordered thereby producing less energy-minimized domain boundaries.  相似文献   

11.
The elution curves of size exclusion chromatography (SEC) for branched polymers formed through free‐radical polymerization that involves chain transfer to polymer were theoretically investigated by using a Monte Carlo method. We considered two types of measured molecular weight distribution (MWD), (1) the calibrated MWD relative to standard linear polymers, and (2) the MWD obtained by using a light scattering photometer (LS) in which the weight‐average molecular weight of polymers within the elution volume is determined directly. It was found that the calibrated MWD clearly underestimates the high molecular weight tail, and the measured distributions are narrower than the true MWD. On the other hand, the present simulation results showed that the LS method gives reasonable estimates of the true MWDs. The mean square radius of gyration of the polymer molecules having the same molecular weight was also investigated. The radii of gyration showed clear deviation from the Zimm‐Stockmayer equation[1] because of the non‐random nature of branched structure and the difference in the primary chain length distribution.  相似文献   

12.
Monte Carlo Modelling of random polymer chains, course grained onto a cubic F lattice, provides the ability to monitor the long range relaxation processes and the dynamic parameters of chains up to 400 units long. The model, described and verified by Haire et al. (Haire KR, Carver TJ, Windle AH. A Monte Carlo model for dense polymer systems and its interlocking with molecular dynamics simulation. Computational and Theoretical Polymer Science 2000; in press), is here applied to the study of molecular parameters in the vicinity of different types of surface and also to the process of polymer welding, whereby adhesion between two adjacent surfaces is achieved by the interpenetration of chains which are across the surface.The model demonstrates that a surface distorts the conformation of chains adjacent to it to give an oblate molecular envelope, that the concentration of vacant sites and chain ends increases near to the surface and that the density of points representing the centres of mass of the chains increases in the sub-surface regions. These results confirm earlier predictions and provide additional confidence in the model.Modelling of the welding process leads to the parameter intrinsic weld time, tw, which is the time from initial perfect contact of the surfaces to the achievement of a weld within which the chain conformation is indistinguishable from the bulk. After the initial period in which the mating surfaces roughen, the welding proceeds according to the t1/4 law predicted by reptation theory. The time to a given level of interdiffusion across the boundary is proportional to the chain length l, a comparatively weak dependence, while tw is proportional to l3, a strong dependence. This is the same dependence on length as for the relaxation time of the chain end-to-end vectors. In fact, the agreement between the relaxation time, measured on the model of the bulk, and tw is surprisingly close, at least for the monodisperse polymers investigated here.  相似文献   

13.
We developed and employed the incremental gauge cell method to calculate the chemical potential (and thus free energies) of long, flexible homopolymer chains of Lennard-Jones beads with harmonic bonds. The free energy of these chains was calculated with respect to three external conditions: in the zero-density bulk limit, confined in a spherical pore with hard walls, and confined in a spherical pore with attractive pores, the latter case being an analog of adsorption. Using the incremental gauge cell method, we calculated the incremental chemical potential of free polymer chains before and after the globual-random coil transitions. We also found that chains confined in attractive pores exhibit behaviors typical of low temperature physisorption isotherms, such as layering followed by capillary condensation.  相似文献   

14.
Defect fluctuations in highly distorted polymer chains were simulated by Monte Carlo calculation. The NMR autocorrelation function was derived and described by the superposition of three exponential functions with time constants spread over two orders of magnitude. As a consequence of defect diffusion, longitudinal chain diffusion (reptation) can be expected in polymer melts. By simulating the mean-square displacement of a segment, it was found that after sufficiently long times, compared with defect density correlation times, a linear relationship holds fairly well. As a rule of thumb, it can be stated that the linear Einstein equation is valid for times much greater than 103 mean step times in practical cases (chain length: several thousand segments, defect concentration: 10–20%), or, in other words, for mean-square displacements greater than a few diffusion step lengths. A long-time chain-diffusion coefficient depending on the molecular weight and on the defect concentration could be derived. Effects on the low-field NMR relaxation behavior are derived and discussed.  相似文献   

15.
Monte Carlo simulations are used to study ion and polymer chain dynamic properties in a simplified lattice model with only one species of mobile ions. The ions interact attractively with specific beads in the host chains, while polymer beads repel each other. Cross linking of chains by the ions reduces chain mobilities which in turn suppresses ionic diffusion. Diffusion constants for ions and chains as a function of temperature follow the Vogel-Tammann-Fulcher (VTF) law with a common VTF temperature at low ion concentration, but both decouple at higher concentrations, in agreement with experimental observations. Our model allows us to introduce pressure as an independent variable through calculations of the equation of state using the quasichemical approximation, and to detect an exponential pressure dependence of the ionic diffusion.  相似文献   

16.
A simple cubic lattice model of the melt of 3-arm star-branched polymers of various length dissolved in a matrix of long linear chains (n1 = 800 beads) is studied using a dynamic Monte Carlo method. The total polymer volume fraction is equal to 0,5, while the volume fraction of the star polymers is about ten times smaller. The static and dynamic properties of these systems are compared with the corresponding model systems of isolated star-branched polymers and with the melt of linear chains. It has been found that the number of dynamic entanglements for the star polymers with arm length up to 400 segments is too small for the onset of the arm retraction mechanism of polymer relaxation. In this regime dynamics of star-branched polymers is close to the dynamics of linear polymers at corresponding concentration and with equivalent chain length. The entanglement length for star polymers appears to be somewhat larger compared with linear chains.  相似文献   

17.
The creation and spatial structure of end-linked bimodal polymer networks was investigated by means of the three-dimensional bond-fluctuation model. The portion of long and short chains was varied. The curing process was found to be reaction-controlled within our simulation parameters. The spatial distribution of the cross-linkers in the created networks revealed no large-scale inhomogeneities. Investigations of the pair-correlation functions of the center of mass of the short chains were consistent with the random distribution of the cross-linkers.  相似文献   

18.
19.
The autocatalytic polymer-analogous reaction A → B in a blend composed of two contacting layers of compatible homopolymers A and B is studied by numerical simulation using the dynamic continuum Monte Carlo method. The evolution of the numerical density of units A and units initially belonged to the chains of homopolymer A is investigated in the course of the reaction and interdiffusion. Local characteristics of the distribution of the homopolymer with respect to its composition and blocks A and B with respect to their length are calculated at different times. The dispersions of the above distributions are appreciably higher than the corresponding dispersion of the Bernoullian copolymer of the same average composition, despite the random character of the reaction. This effect can be provided by changes in the composition of the blend on the scale of the reacting chain as well as by the diffusive mixing of the above chains. For the products of the polymer-analogous reaction, the broadening of the compositional distribution is predicted also by the theoretical model, which describes interdiffusion in the reacting system on scales that are markedly greater than the size of a polymer chain.  相似文献   

20.
The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy () between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/homopolymer blends. Furthermore, the investigation of the average end-to-end distance () in different systems indicates that the copolymer chains tend to coil with the decrease of whereas the of the homopolymer chains depends on the chain structure of the copolymers. As for the system containing the alternating or the random copolymers, the homopolymer chains also tend to coil with the decrease of . However, for the systems including the block copolymers, there is a slight difference in the of the homopolymer chains with the variation of .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号