首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
29Si NMR peaks due to species with the double four-membered ring siloxane backbone composed of both Si(O)4/2 and CH3Si(O)3/2 units, (CH3) n Si8O 20 – n /(8 – n) – (n=1–3), formed by co-hydrolysis of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions in methanol have been assigned. It has been found that 29Si NMR peaks due to Si(OSi)3(O) units shift to lower frequencies by replacement of the adjacent Si(O)4/2 units by CH3Si(O)3/2 units, in other words, with increasing m value in Si[OSi(O)3]3 – m [OSi(CH3) (O)2] m (O) (m=0–2). Peaks from CH3 Si(OSi)3 units in the species have also appeared as separated due to the kind of neighbor structural units. On the basis of the assignments, positions of CH3Si(O)3/2 units in the cubic octameric siloxane framework of (CH3) n Si8O 20 – n /(8 – n) – (n=2, 3), for both of which three isomers are present, have been estimated.  相似文献   

2.
The asymmetric induction of planar chirality in 1,n-dioxa[n]paracyclophane derivatives via asymmetric ortho-lithiation is described. Enantioselective ortho-lithiation of unflippable 1,n-dioxa[n]paracyclophanes (n≤11) using sec-BuLi-(?)-sparteine at ?78 °C and subsequent treatment with electrophiles gave the corresponding planar-chiral monosubstituted paracyclophanes with excellent ee. Further lithiation of these compounds and treatment with electrophiles gave planar-chiral paracyclophanes with two different substituents. Dilithiation of unflippable 1,n-dioxa[n]paracyclophanes gave the corresponding C2-symmetrical disubstituted products with almost perfect ee. In the case of flippable 1,n-dioxa[n]paracyclophanes (n≥12), a stepwise reaction was required for the highly enantioselective formation of disubstituted products.  相似文献   

3.
The interaction between the components of a catalytic system Pd(acac)(C3-acac)PPh3+nPPh3+ mBF3OEt2(where n= 1–4, m= 0.25–4, and acac is the acetylacetonate ligand) in benzene is examined by UV and IR spectroscopy. With a relative excess of PPh3(n> m), acacH and [Pd(acac)(PPh3)2]+BF 4were the main products, whereas BF2acac and a polynuclear complex of PdF2with PPh3also containing Pd2+(BF 4)2units were formed with a relative excess of BF3OEt2(n< m).  相似文献   

4.
Using aqueous GaCl3 and chloride containing Ga(ClO4)3 solutions measurements have been carried out to investigate the formation of complexes with mixed ligands beside the [GaCl4] ion. In contrast to the Raman spectra, which contain only the signals of the [GaCl 4 ] and the [Ga(H2O)6]3+ ion, the71Ga-NMR spectra give clear evidence for the existence of complexes with mixed ligands. Investigations at low temperatures showed their coordination to be octahedral resulting in species [GaCln(H2O)6–n ](3–n)+.  相似文献   

5.
The complexation of zinc(II) with chloride, bromide and iodide ions has been studied by calorimetry in hexamethylphosphoric triamide (HMPA) containing 0.1 mol-dm–3 (n-C4H9)4NClO4 as a constant ionic medium at 25°C. The formation of [ZnXn](2–n)+ (n=1,2,3,4 for X=Cl; n=1,2 for X=Br, I) is revealed, and their formation constants, enthalpies and entropies were determined. It is proposed that the zinc(II) ion is fourcoordinated in HMPA and the coordinating HMPA molecules are stepwise replaced with halide ions to form [ZnXn(hmpa)4–n](2–n)+ (n=1–4), as is the case for the cobalt(II) ion. Furthermore, the formation of [ZnClI], [ZnBrI], [ZnBrCl] and [ZnBrCl2] is revealed in the relevant ternary systems. It is found that the affinity of a given halide ion X to [ZnCl]+, [ZnBr]+ and [Znl]+ is practically the same.  相似文献   

6.
A variety of disubstituted (double-comb) polysiloxane polymers have been prepared containing linear, branched, and cyclic oligoethyleneoxide units, –(OCH2CH2)n–, in the side chains and as part of the siloxane backbone. Copolymers, using mixtures of linear ethylene oxide side chains, were also synthesized. These polymers were doped with LiN(SO2CF3)2 (LiTFSI, 1) and conductivities of the polymer-salt complexes were determined as a function of temperature and doping level. The maximum conductivity of these polymers at 25 ° C was 2.99 ×10–4, for a copolymer containing equimolar amounts of side chains with n = 5 and 6.  相似文献   

7.
Tetracethoxysilane (TEOS) and methyltriethoxysilane (MTEOS) have been co-hydrolyzed in methanolic solutions containing tetramethylammonium ions that only affect polymerization of silicate species (hydrolysis products of TEOS) to form the Si8O 20 8– cubic octameric silicate species. The effects of water content and TEOS-to-MTEOS molar ratio on the distribution of species formed in the solutions have been investigated with the trimethylsilylation technique and 29Si n.m.r. spectroscopy. Formation of Si8O 20 8– and the cubic octameric species consisting of both Si(O)4 and CH3Si(O)3 units, (CH3)nSi8O 20–n (8–n)– (n=1–5), is found in the solutions. The increase of water content in the solutions solely results in increasing yield of Si8O 20 8– in spite of the presence of hydrolysis products of MTEOS together with those of TEOS, suggesting that water in the solutions plays an important role in the formation of Si8O 20 8– with the aid of tetramethylammonium ions. The TEOS-to-MTEOS molar ratio varies the distribution that is kept under control by the water content, increasing yields of (CH3)nSi8O 20–n (8–n)– (n=1, 2). It is found that the water content and TEOS-to-MTEOS molar ratio determine the reaction conditions effective for the formation of CH3Si(O)3 unit-containing cubic octameric species.  相似文献   

8.
A study was carried out on the reaction of 1,1,3,3-tetramethyldisiloxane with metal oxides such as CuO, HgO, and Sb2O5 in the presence of compounds containing a siloxane bond such as hexamethyldisiloxane, octamethylcyclotetrasiloxane, and trimethylacetoxysilane, which, at 100–110°C over 0.5–10 h, leads to the formation of linear organyl siloxanes (CH3-[-Si(CH3)2O-]n-Si(CH3)3, CH3-[-Si(CH3)2O-]n-Si (CH3)2H, and H-[-Si(CH3)2O-]n-Si(CH3)2H, where n=2–6, and cyclic organylsiloxanes. The reaction does not proceed in the presence of aluminum, bismuth, germanium, and lead oxides.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1658–1660, July, 1990.  相似文献   

9.
Conclusions The thermal gross decomposition of dimethylacetamide hydroperoxide (ROOH) in dimethylacetamide (RH) as the medium proceeds in harmony with the equation: Wp=kind [ROOH]0 m/[RH]0 n, where m=1.5–2; n=2–0.5. Alkyl radicals with a chain length of 195–3 units are mainly responsible for the induced decomposition. We determined the ratio between the molecular and radical directions of the decomposition and kind in the range 80–132°.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 967–970, April, 1978.  相似文献   

10.
From the reaction mixtures in the uncatalyzed polybromination of [2.2]paracyclophane by the action of excess Br2 in CCl4, there have been found along with the known products — 4,15- and 4,16-dibromo[2.2]paracyclophanes — two new aromatic tribromides of this series, which have been isolated in pure form: 4,12,15- and 4,15,16-tribromo[2.2]paracyclophanes. Special experiments demonstrated that the mixtures of these tribromides are formed as a result of competitive monobromination of 4,15-dibromo[2.2]paracyclophane; the 4,15,16-tribromo[2.2]paracyclophane, together with still another newly isolated isomer of this series — 4,8,12-tribromo[2.2]paracyclophane — is formed as a result of competitive monobromination of 4,16-dibromo[2.2]paracyclophane. As an explanation of the features of the orienting effect of substituents in these competing reactions, a rule was proposed: On the conventional orientation (from the electronic point of view) of entry of the bromine atom into the substituted ring (para > ortho > meta), a steric limitation is imposed on its attack in the pseudo-gem-position, owing to the bulky bromine atom that is transannularly positioned above it in the neighboring aromatic ring. The structures of all of the tribromides were established on the basis of elemental analyses, mass spectrometry, and1H NMR spectrometry (including PMR using the homonuclear Overhauser effect). The data obtained in this work indicate that the 4,12,15-tribromo[2.2]paracyclophane and 4,15,16-tribromo[2.2]paracyclophane are predecessors of the two tetrabromides previously obtained by Cram — 4,7,12,15- and 4,5,15,16-tetrabromo[2.2]paracyclophanes; and the 4,8,12-tribromo[2.2]paracyclophane is a possible predecessor of 4,8,12,16-tetrabromo[2.2]paracyclophane, which is unknown up to the present time.A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 8, pp. 1837–1843, August, 1992.  相似文献   

11.
Pd-catalyzed cross-coupling reaction of organoheteroatom stannanes containing elements of the groups 15 (P, As) and 16 (Se) with perfluoroalkyl iodides (RfI) was studied. Herein, a one-pot two-step reaction to form P–Rf, As–Rf and Se–Rf bonds is reported. The stannanes n-Bu3SnZPhn (Z = P, As, Se; n = 1–2) were generated in situ by the reaction of the PhnZ anion with n-Bu3SnCl. The cross-coupling reactions of these stannanes with RfI afforded C-heteroatom products, new perfluoroalkylarsines and perfluoroalkylselenides in good yields (47–90%) and perfluoroalkylphosphines in moderate yields (15–48%).  相似文献   

12.
A series of homodinuclear Pt compounds containing the anionic, potentially terdentate NCN ligand (NCN=[C6H3(Me2NCH2)2-2,6]) or its 4-ethynyl derivative were prepared. The two platinum centres are linked together in two different fashions: (i) directly linked by an ethynyl or diethynylphenyl group (head-to-head) and (ii) indirectly bonded by a ethynyl- or butadiynyl-linked bis-NCN ligand (tail-to-tail). The reaction of the head-to-head σ,σ′-ethynylide complex {Pt}CC{Pt} ({Pt}=[Pt(C6H3{CH2NMe2}2-2,6)]+) with [CuCl]n yields {Pt}Cl and [Cu2C2]n, while with [Cu(NCMe)4][BF4] a Cu(I) bridged complex was formed: [(η2-{Pt}CC{Pt})2Cu][BF4]. The results of cyclic voltammetry experiments reveal that both connection modes of the two platinum centres lead to electrochemically independent Pt–NCN units. The X-ray crystal structure analysis of the neutral, tail-to-tail bridging butadiyne bis-NCNH ligand [C6H3(CH2NMe2)-1,3-(CC)-5]2 is reported.  相似文献   

13.
A systematic investigation on glass formation in the ternary system InF3–BaF2–Sc(PO3)3n has been carried out. Scandium polyphosphate Sc(PO3)3n has been used as a third component in order to investigate the possibilities of obtaining new stable glasses. The above long-chain polyphosphate has been prepared using a specially elaborated cryo-technique, which allowed the preparation of high-purity product. Stable ternary compositions have been obtained within the compositions range (in mol%): 5–75 InF3, 0–80% BaF2, 0–50% Sc(PO3)3n. Glasses were characterized by Differential Scanning Calorimetry, vibrational spectroscopy (Raman) and 31P NMR. Structural features for the glass were put forward. Isolated P(O,F)4 groups or fluoroindated metaphosphate units could be identified depending on glass compositions.  相似文献   

14.
Summary The kinetics and mechanism of the system: [FeL(OH)]2–n + 5 CN [Fe(CN)5(OH)]3– + Ln–, where L=DTPA or HEDTA, have been investigated at pH= 10.5±0.2, I=0.25 M and t=25±0.1 C.As in the reaction of [FeEDTA(OH)]2–, the formation of [Fe(CN)5(OH)]3– through the formation of mixed ligand complex intermediates of the type [FeL(OH)(CN)x]2–n–x, is proposed. The reactions were found to consist of three observable stages. The first involves the formation of [Fe(CN)5(OH)]3–, the second is the conversion of [Fe(CN)5(OH)]3– into [Fe(CN)6]3– and the third is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by oxidation of Ln– The first reaction exhibits a variable order dependence on the concentration of cyanide, ranging from one at high cyanide concentration to three at low concentration. The transition between [FeL(OH)]2–n and [Fe(CN)5(OH)]3– is kinetically controlled by the presence of four cyanide ions around the central iron atom in the rate determining step. The second reaction shows first order dependence on the concentration of [Fe(CN)5(OH)]3– as well as on cyanide, while the third reaction follows overall second order kinetics; first order each in [Fe(CN)6]3– and Ln–, released in the reaction. The reaction rate is highly dependent on hydroxide ion concentration.The reverse reaction between [Fe(CN)5(OH)]3– and Ln– showed an inverse first order dependence on cyanide concentration along with first order dependence each on [Fe(CN)5– (OH)]3– and Ln–. A five step mechanism is proposed for the first stage of the above two systems.  相似文献   

15.
The structure of nearly saturated or supersaturated aqueous solutions of NaCI [6.18 mol (kg H2O)–1], KCI [4.56 mol (kg H2O)–1], KF [16.15 mol (kg H2O)–1] and CsF [31.96 mol (kg H2O)–1] has been investigated by means of solution X-ray diffraction at 25°C. In the NaCI and KCI solutions about 30% and 60%, respectively, of the ions form ion pairs and the Na+–Cl and K+–Cl distances have been determined to be 282 and 315 pm, respectively. The average hydration numbers of Na+ and Cl ions are 4.6 and 5.3, respectively, in the NaCI solution and those of K+ and Cl ions in the KCI solution are both 5.8. In the KF solution, clusters containing some cations and anions, besides 1:1 (K+–F) ion pairs, are formed. The K+–F interatomic distance has been determined to be 269 pm, and nonbonding K+...K+ and F...F distances in the clusters are 388 and 432 pm, respectively, and the average coordination numbers n KF , n KK and n FF have been estimated to be 2.3, 1.9, and 1.6, respectively. In the highly supersaturated CsF solution an appreciable amount of clusters containing several caesium and fluoride ions are formed. The Cs+–F distance in the cluster has been determined to be 312 pm, while the nonbonding Cs+...Cs+ and F...F distances are estimated to be 442 and 548 pm, respectively, the distances being about and times the Cs+–F distance, respectively. The coordination numbers n CsF , n CsCs , and n FF in the first coordination sphere of each ion are 3.3, 2.3 and 5.3, respectively, and the result shows the formation of clusters of higher order than 1:1 and 2:2 ion pairs. These ion pairs and clusters may be regarded as embryos for the formation of nuclei of crystals and the results obtained in the present diffraction study support observations for the nucleation of the alkali halide crystals studied by molecular dynamics simulations previously examined.  相似文献   

16.
The structural units in diphenylsilanediol/titanium-isopropoxide solutions with molar ratio Si:Ti between 1:0.1 and 1:5 were examined by means of 29Si and 17O NMR. The main component in solutions with molar ratio Si/Ti=1:0.1 is the chain-like octaphenyltetrasiloxanediol. With increasing Ti-isopropoxide content (1:0.25–1:05) Si–O–Ti units of the spirocyclic titanosiloxane Ti[O5Si4(C6H5)8]2 prevail in the solutions accompanied by the chain-like tetrasiloxanediol. The 29Si NMR spectra of 1:1 solutions indicate a lot of different Si containing building units with chemical shifts mainly between-40 and-46 ppm. The signals with a chemical shift between-40 and-46 ppm are probably caused by Si atoms which are connected via oxygen bridges directly (Si–O–Ti) or indirectly (Si–O–Si–O–Ti) with titanium. Contrary to the 1:1 solutions only one or two different species with Si–O–Ti units are present in high Ti-alkoxide containing solutions (1:5). 29Si and 17O NMR results reveal a quick hydrolysis of the Ti–O–Si bonds to titanium-oxo-hydroxo-polymers and phenylsiloxanediols or their isopropyl esters after the addition of water to the solutions. This separation into species only containing either Ti–O–Ti or Si–O–Si bonds can entail a decreased homogeneity of the reaction products on a molecular level.  相似文献   

17.
Coordination networks formed between Co(NCS)2 and 4’-substituted-[1,1’-biphenyl]-4-yl-3,2’:6’,3”-terpyridines in which the 4’-group is Me (1), H (2), F (3), Cl (4) or Br (5) are reported. [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, [Co(4)2(NCS)2]n, and [Co(5)2(NCS)2]n·nCHCl3 are 2D-networks directed by 4-connecting cobalt nodes. Changes in the conformation of the 3,2’:6’,3”-tpy unit coupled with the different peripheral substituents lead to three structure types. In [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, cone-like arrangements of [1,1’-biphenyl]-4-yl units pack through pyridine…arene π-stacking, whereas Cl…π interactions are dominant in the packing in [Co(4)2(NCS)2]n. The introduction of the Br substituent in ligand 5 switches off both face-to-face π-stacking and halogen…π-interactions, and the packing interactions are more subtly controlled. Assemblies with organic linkers 1–3 are structurally similar and the lattice accommodates CHCl3 molecules in distinct cavities; thermogravimetric analysis confirmed that half the solvent in [Co(3)2(NCS)2]n·4nCHCl3 can be reversibly removed.  相似文献   

18.
The X-ray structural study of the reaction product of equimolar amounts of [Au3Cu2(C2Ph)6]. [{Au(C2Ph)} n ], and [Ag(C2Ph)} n ] revealed two bimetallic anionic [N(PPh3)2] + [Au3Ag2(C2Ph)6] and [N(PPh3)2]+[Au3Cu2 (C2 Pg)6] — clusters co-crystallized in one asymmetric unit. Each cluster has trigonal bipyramidal geometry with three gold atoms occupying equatorial planes and two silver or copper atoms in the apical positions. Our earlier conclusion based upon spectroscopic characterization describing the product of be above reaction as trimetallic cluster containing three coinage-metals with an overall composition [Au3CuAg(C2Ph)6], was erroneous.Presented at the 210th ACS Meeting, August 19–24, 1995, Chicago, Illinois.  相似文献   

19.
The interaction of iron carbonyls Fe n (CO) m (wheren = 1,m = 5;n = 2,m = 9;n = 3,m = 12) with anionic Lewis bases (H, F, Cl, Br , I, CN, SCN, N3 , MeSO3 , MeCO2 , CF3CO2 , S2 , CO3 2–, and SO4 2–) passes through two-stage redox-disproportionation. The first stage is the formation of an iron carbonyl-base complex, [Fe n (CO) m–1C(O)L], and the second is a single-electron reduction of this complex by another molecule of the initial iron carbonyl, giving rise to Fe(l) and Fe(–l) derivatives.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 248–249, January, 1996.  相似文献   

20.
Third-order nonlinear optical properties of GeSe2–In2Se3–CsI chalcogenide bulk glasses are studied by Standard pico-second (ps) time-resolved optical Kerr effect (OKE) technique. The obtained χ(3) and n2 at 1064 nm of the glass 72.25GeSe2–23.75In2Se3–5CsI are as large as 10.07 × 10−12 esu and 6.5 × 10−18 m2/W, respectively, more than twice that of As2S3 glass. The relationship between glass compositions and the third-order nonlinear optical responses was analyzed by Raman spectra in terms of structural evolution. It is suggested that the tetrahedral units ([GeSe4] and [InSe4]) play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号