首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic Gd(III) and Y(III) chelates produce ligand-centered emissions during cathodic pulse polarization of oxide-covered aluminum electrodes, while the corresponding Tb(III) chelates produce metal-centered5D47Fj emissions. It was observed that a redox-inert paramagnetic heavy lanthanoid ion, Gd(III), seems to enhance strongly intersystem crossing in the excited ligand and direct the deexcitation toward a triplet-state emission, while a lighter diamagnetic Y(III) ion directs the photophysical processes toward a singlet-state emission of the ligand. The luminescence lifetime of Y(III) chelates was too short to be measured with our apparatus, but the luminescence lifetime of Gd(III) chelates was between 20 and 70 μs. The mechanisms of the ECL processes are discussed in detail. Preliminary results of electrogenerated triplet-state emission of one of the ligands used in this work have been published in a letter elsewhere [9].  相似文献   

2.
Eu3+-, Tb3+- and Er3+-cored dendrimer complexes were prepared by self-assembly of three fluorinated dendrons, each with a carboxylate anion focal point, around the lanthanide ion. Energy transfer from the peripheral fluorinated phenyl moieties of the dendrons to the lanthanide cation was evidenced spectroscopically for Eu3+- and Tb3+-cored dendrimer complexes in solution. The excitation of perfluorinated aromatic groups was found to decay with ca. 0.7 ns and a longer decay time 10-13 ns was related to the coordination at the Ln3+ focal point. Luminescence from the lanthanide core decays with lifetime in the range 1-1.5 ms over a wide concentration range (μM-mM), similar to the luminescence decay time of the corresponding acetate ion complexes in D2O. The main quenching mechanism of the lanthanide emission appears to be due to vibrations among surrounding C-H bonds of the intermediate shell of the flexible dendrimer scaffold. Antenna effect and energy harvesting from the surface of the dendrimer and transfer to the core was the main mechanism for luminescecnce in the dendrimer complexes with lanthanide cations.  相似文献   

3.
An efficient luminescence energy transfer (LET) system based on terbium(III)-sodium hexametaphosphate (Tb/SHMP) chelates as donor and 4-((4-(2-aminoethylamino)naphthalen-1-yl)diazenyl)benzenesulfonic acid dihydrochloride (ANDBS) as acceptor was developed for sensitive determination of trace nitrite. Stable and strong fluorescence Tb/SHMP chelates were prepared in aqueous solution. Based on Griess Reaction, ANDBS was generated by the quantitative reaction of nitrite, sulfanilamide and N-(1-naphtyl)-ethylenediamine dihydrochloride (N1NED). The degree of the overlap was effective for LET between the emission spectrum of Tb/SHMP chelates and the absorption spectrum of ANDBS. Based on the luminescence intensity quenching of Tb/SHMP chelates in proportion to the trace amounts of nitrite, a new assay for the selective and sensitive determination of nitrite was developed. Under the optimum conditions, the linear calibration graph was obtained with a linear range of 0.00040-0.20 μg mL−1 (R=0.99657). The detection limit of was 0.00010 μg mL−1 (R=0.99657). The method was applied successfully to the determination of nitrite for synthetic samples.  相似文献   

4.
The luminescence intensity of Eu(III) ions (I Eu) in 3: 1 aqueous solutions of thenoyltrifluoroacetone, n-methoxybenzoylacetone, and dibenzoylmethane with 1,10-phenanthroline is studied in the presence and the absence of La(III), Gd(III), and Nd(III) ions. It is found that, in binary solutions of Eu(III) with La and Gd, the intensity I Eu, as well as the influence of chelates of La and Gd on I Eu, is considerably greater if these ions are introduced into the solutions of β-diketones and 1,10-phenanthroline simultaneously and homogeneously than when they are introduced into these solutions successively. This result is explained by the difference in the distribution of different Ln chelates over nanostructures. The average size of the structures arising is estimated.  相似文献   

5.
Rare earth ion (Tb3+ and Eu3+)-doped alumina films were prepared by the aqueous sol-gel method under various conditions. The influences of the OH groups (phonon relaxation) and rare earth ion concentration (cross-relaxation) on luminescence were examined. In regard to the former relaxation, at treatment temperature above 600°C, reciprocal lifetime decreased with OH concentration, and below 500°C, decreased markedly and nonlinearly. On the other hand, in regard to the latter relaxation, there was negligible effect on luminescence for these doped films. The quantitative treatment was tried to lifetime considering these influences. Tb3+ and Eu3+ co-doped alumina films showed enhanced Eu3+ luminescence by the energy transfer from Tb3+ to Eu3+. Eu3+ luminescence intensity increased with a greater Tb3+ concentration.  相似文献   

6.
In this pape,r the influence of surface effects on the self-activated (SA) luminescence in ZnS nanoparticles prepared by the wet-chemical method is presented. It is observed that the luminescence of SA decreases dramatically by rinsing with methanol. In the rinsed sample, the luminescence of SA increases more by ultraviolet (UV) light irradiation. To clarify its origin, the Raman spectra and electron paramagnetic resonance (EPR) are studied. The results demonstrate that the vibrational modes assigned to organic functional groups of -OH and -COO and -CH3 decreases remarkably by rinsing, while the EPR signal originated from the unpaired electrons of some transition metal impurity ions including Mn2+ increases. It is suggested that the SA centers prefer to occupy the sites near the surface and that the donor of SA emission may be partly related to the organic functional groups of -OH and -COO adsorbed on the surface. The surface-dangling bonds caused by unpaired electrons of some transition metal impurity ions play a role of surface states, leading to the quenching of the SA emissions. The organic functional groups chemically combine with these surface-dangling bonds leading to the decrease in surface states and surface nonradiative relaxation channels and to the increase in the SA emissions.  相似文献   

7.
Lyoluminescence of gamma irradiated and additively coloured NaCl, NaBr, KCl and KBr crystals when dissolved in fluorescent and chemiluminescent aqueous solutions is investigated. Spectral analysis of the emitted light has shown that lyoluminescence spectra are similar to the fluorescence spectra of these solutions. Luminescence takes place when a fluorescent acceptor is directly excited by a liberated F-centre (hydrated electron e-aq) or indirectly by an energy transfer from a released excited halide ion ∥X-1 (solvated hole after recombination with hydrated electron). Oxygen, in general, has a marked quenching effect on luminescence. In chemiluminescent systems, its presence is essential to provoke luminescence in a sequence of events leading to a fluorescent end product.  相似文献   

8.
For the fist time in Y2SiO5:Pr3+ nanocrystals, the ordered stage in the 1 D 2 luminescence decay curves for Pr3+ ions has been observed at anomalously low doped ion concentration (0.5 at %). This effect is caused by preferred location of the activator ions in the near-surface layer of the nanocrystal that provides the relaxation of elastic tension arising due to the difference of ionic radii of Pr3+ and Y3+ ions. Concentration quenching of Pr3+ luminescence is caused by the cooperative cross-relaxation.  相似文献   

9.
Europium-doped cubic Gd2O3:Eu3+ nanoparticles containing various activator content in the range of 5-15 wt% were synthesized by a liquid-phase reaction method to investigate the influence of Eu3+ loading on the optical properties of phosphors by using XRD, TEM, BET, spectrometer and fluorometer. The size of Gd2O3:Eu3+ powders was in the range 21-41 nm. The phosphors showed an initial increase in luminescence and then a subsequent decrease with further doping (above 10 wt%). The decay time was reduced with increasing Eu loading; however, it decreased significantly above the 10% Eu doping. From spectroscopic studies, the Eu3+ doping ion distribution was uniform and homogeneous up to the 10 wt% loading because no concentration quenching effect was observed. However, further Eu3+ doping above 10 wt% reduced the luminescence due to the concentration quenching effect, as deduced from the shortening of the decay time.  相似文献   

10.
A new rhodamine derivative (RhB-Im) was synthesized as an “on-off” chemosensor for Cu2+ in an acidic aqueous solution. RhB-Im exhibited chemically reversible and highly selective and sensitive fluorescence response toward Cu2+ in aqueous acetate-buffer/DMF solution (pH 3.6) over other competitive metal ions. Upon addition of Cu2+, RhB-Im displayed remarkable fluorescence quenching accompanied by a clear color change from pink to red. Based on the analysis of Stern–Volmer plots, a static quenching mode was proposed to be primarily responsible for the fluorescence quenching event when the concentration of Cu2+ was low, but, the energy- and electron-transfer processes cannot be ruled out.  相似文献   

11.
We studied the luminescence intensity (I lum) of the ions Eu(III) and Sm(III) in relation to the concentrations of ions Ln(III) and Al(III) in water at pH 7 at an excess of such beta-diketones as p-methoxybenzoyltrifluoroacetone (MBTA), dibenzoylmethane (DBM), and tenoyltrifluoroacetone (TTA) and in the presence of 1,10-phenanthroline (phen) used as a synergistic agent. Both the enhancement of I lum (Eu(III)) upon addition of Gd(III) (co-luminescence) and the effect of the third ion are found to depend on the order of addition of the ions to the solution and, therefore, on the sequence of formation of nanostructures of complexes of these ions in the solution, in which the transfer of the triplet energy of the organic part of complexes takes place, leading to an enhancement in I lum (Eu(III)). The intensity I lum (Eu(III)) is shown to increase equally rapidly upon addition of either Gd(III) or Al(III) to solutions with DBM + phen. In solutions of all the three beta-diketones studied, the Eu(III) ions incorporate better into nanostructures of triply charged ions whose radius is similar to or smaller than the radius of the Eu(III) ions. Our study of the effect that the replacement of H2O with D2O exerts of I lum of 5 × 10?8 M Eu(III) at different concentrations of ligands shows that, at [Ln(III)] < [OH?] and at a concentration of beta-diketones smaller than 3 × 10?5 M, the deuteration affects I lum(Eu(III)) and, therefore, the first coordination sphere of Eu(III) contains OH groups. It is shown that, in aqueous solutions with 3 × 10?5 M TTA + 10?5 M phen, the increase in I lum(Eu(III)) caused by the introduction of Gd(III) ions results from two processes occurring in the nanostructures of these complexes: the energy transfer from Gd(III) complexes to Eu(III) complexes and the increase of I lum of Eu(III) itself under the conditions in the solution where the total concentration [Ln] ? [OH?] and both the photochemical deactivation of Eu(III) and the exchange of its excitation energy for vibrations of the OH groups are suppressed. The reliability of the size estimation of nanostructures of metal complexes is discussed in terms of the effect of these nanostructures on I lum of chelates of Eu(III).  相似文献   

12.
Thermal quenching of 5d-4f luminescence from Nd3+, Er3+ and Tm3+ ions doped into KYF4 crystals has been investigated in the temperature range up to ∼750 K where this luminescence is completely quenched. The obtained temperatures of thermal quenching (Tq) are ∼270, 495, 450 K for Nd3+, Er3+, Tm3+, respectively. At high temperatures, thermal quenching of 5d-4f luminescence from Nd3+ and Er3+ is accompanied by the appearance of 4f-4f luminescence from the lower-energy 4f levels. It has been shown that the dominating mechanism of thermal quenching for Nd3+ and Er3+ ions is thermally stimulated non-radiative transitions (intersystem crossing) from the 5d states to lower-energy 4f levels, namely 2G(2)9/2 and 2F(2)7/2, respectively, whereas for the Tm3+ ion, thermally stimulated ionization of 5d electrons to the conduction band states is responsible for thermal quenching of 5d-4f luminescence. The energy gap between the lowest Tm3+ 5d level and the bottom of the KYF4 conduction band has been estimated to be 0.66 eV.  相似文献   

13.
The nature of the conformational transition of the polymers with Ru (II) polypyridyl complexes covalently attached to poly(acrylic acid) (PAA) and poly(metacrylic acid) (PMAA) has been in studied in aqueous solutions at different pH values. The [PAA-Ru4]8+ and [PMAA-Ru4]8+ polymers has been investigated by means of the luminescence properties of the Ru(bpy)32+ moiety by steady-state and time-resolved luminescence spectroscopy. The pH markedly affects the luminescence spectra and quantum yields of both ruthenium-polyacid complexes in aqueous solution. Another feature investigated in this work was a comparative study of their luminescence quenching by acridinic dyes in solution. The analysis of the kq values obtained indicates that the bimolecular quenching by acridinium and 9-aminoacridinium is more effective in the [PAA-Ru4]8+ complex (6.4×109 and 1.4×109 M−1 s−1, respectively) compared to the [PMAA-Ru4]8+ (2.6×109 and 1.0×109 M−1 s−1). Also, a similar behavior was evidenced for the Ru solely adsorbed onto pure PAA (9.0×109 and 3.4×109 M−1 s−1) and PMAA (1.8×109 and 1.7×109 M−1 s−1) in aqueous solution. The effect of enhancement of quenching rate constant in [PAA-Ru4]8+ system could be ascribed to the higher density of Ru per polymer chain. The average number per chain is similar in both systems, but the molecular weight is lower for [PAA-Ru4]8+. Furthermore, the larger hydrophilic environment provided by the PAA exposes the Ru probe to the outer surface of the polymer in solution.  相似文献   

14.
Selective quenching of luminescence of quantum dots (QDs) by Cu2+ ions vis-à-vis other physiologically relevant cations has been reexamined. In view of the contradiction regarding the mechanism, we have attempted to show why Cu2+ ions quench QD-luminescence by taking CdS and CdTe QDs with varying surface groups. A detailed study of the solvent effect and also size dependence on the observed luminescence has been carried out. For a 13% decrease in particle diameter (4.3 nm →3.7 nm), the quenching constant increased by a factor of 20. It is established that instead of surface ligands of QDs, conduction band potential of the core facilitates the photo-induced reduction of Cu (II) to Cu (I) thereby quenching the photoluminescence. Taking the advantage of biocompatibility of dendrimer and its high affinity towards Cu2+ ions, we have followed interaction of Cu2+-PAMAM and also dendrimer with the CdTe QDs. Nanomolar concentration of PAMAM dendrimer was found to quench the luminescence of CdTe QDs. In contrast, Cu2+-PAMAM enhanced the fluorescence of CdTe QDs and the effect has been attributed to the binding of Cu2+-PAMAM complex to the CdTe particle surface. The linear portion of the enhancement plot due to Cu2+-PAMAM can be used for determination of Cu2+ ions with detection limit of 70 nM.  相似文献   

15.
Two new polyacid derivative ligands of thienyl-substituted terpyridine analogues, N,N,N1,N1-[4′-(2?-thienyl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo) tetrakis(acetic acid) (TTTA) and N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-(2″-thienyl)pyridine] tetrakis(acetic acid) (BTTA), were synthesized, and the luminescence properties of their Eu3+ and Tb3+ chelates were investigated. The Eu3+chelates of the two ligands are strongly luminescent having luminescence quantum yields of 0.150 (TTTA-Eu3+) and 0.114 (BTTA-Eu3+), and lifetimes of 1.284 ms (TTTA-Eu3+) and 1.352 ms (BTTA-Eu3+), whereas their Tb3+ chelates are weakly luminescent. The TTTA-Eu3+ chelate was used for streptavidin (SA) labeling, and the labeled SA was used for time-resolved fluoroimmunoassay of insulin in human sera. The method gives the detection limits of 33 pg ml−1.  相似文献   

16.
We studied sensitization of Eu(III) and Tb(III) ions by molecules of 1,10-phenanthroline and 2,2-bipyridil in D2O and d 6-ethanol and the influence of Nd(III), Pr(III), Sm(III), Gd(III), and Ho(III) ions on the luminescence intensity I lum and lifetime τlum of Eu(III) and Tb(III) in solutions. The stability constants of complexes of Eu(III) and Gd(III) with 2,2′-bipyridil are measured by spectrophotometric and luminescence methods. It is shown that luminescence of Eu(III) is quenched by Gd(III) ions at the ion concentration equal to 10?2–10?1 M, which is caused by competing between these ions for a sensitizer. At the concentration of Ln(III) ions equal to 10?6?10?3 M, the sensitized luminescence of Eu(III) and Tb(III) was quenched and τlum decreased in the presence of Nd(III) ions, whereas in the presence of Gd(III) the luminescence intensity increased. It is proved that a bridge that connects the two ions upon energy transfer is formed by hydroxyl groups. The intensity of luminescence of Eu(III) and Tb(III) in aqueous solutions and its lifetime decreased in the presence of hydroxyl groups, while upon addition of Gd(III) to these solutions these quantities were restored. We also found that the addition of Gd(III) to deoxygenated ethanol solutions of 2,2′-bipyridil and Eu(III) slows down photochemical and thermal reactions between bipyridil and Eu(III), resulting in the increase in the luminescence intensity of Eu(III).  相似文献   

17.
The direct comparison of the luminescence decay data obtained for nano- and bulk Y2SiO5:Pr3+ crystals has revealed that the concentration threshold of luminescence quenching is strikingly low for nanocrystals. Nanocrystal inhomogeneous stress field induced by a surface stimulates the segregation of the doped Pr3+ ions within the surface layer that provides the relaxation of elastic tension arising due to the difference of the ionic radii of Pr3+ and Y3+. The Pr3+ irregular distribution in the nanocrystal volume results in the Pr3+ local concentration increasing that facilitates the luminescence quenching.  相似文献   

18.
Different concentrations of Ho3+-doped lead borate titanate aluminum fluoride (LBTAFHo) glasses with chemical composition of PbO-H3BO3-TiO2-AlF3-Ho2O3 were prepared by the melt quenching method. The spectral properties were investigated using the absorption, emission and decay measurements. The experimental oscillator strengths were calculated from the area under the absorption bands. Applying Judd-Ofelt theory, the intensity parameters (Ωλ=2, 4, 6) were calculated, by the least square fit approach from which the radiative transition rates, luminescence branching ratios and radiative decay times were determined. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration. To investigate the luminescence potentiality of 5F45I8 emission level, the effective bandwidth and the stimulated emission cross-section were determined. The quenching in experimental decay time is attributed to the resonance energy transfer among the excited Ho3+ ions.  相似文献   

19.
The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.  相似文献   

20.
High brightness amine‐terminated silicon nanocrystals (Si NCs) have been utilized in a simple and rapid assay for the highly selective and sensitive detection of Fe3+ via quenching of their strong blue luminescence, without the need for analyte‐specific labeling groups. Sensitive detection of Fe3+ is successfully demonstrated, with a linear relationship observed between luminescence quenching and Fe3+ concentration from 5 × 10?6 to 900 × 10?6m and a limit of detection of 1.3 × 10?6m . The Si NCs show excellent selectivity toward Fe3+ ions, with no quenching of the luminescence signal induced by the presence of Fe2+ ions, allowing for solution phase discrimination between the ionic species in different charge states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号