首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) selftrapped states in Bose–Einstein condensates (BECs), which are stabilized by effective self-repulsion induced by quantum fluctuations around the mean-field (MF) states [alias the Lee–Huang–Yang (LHY) effect]. The basic models are presented, taking special care of the dimension crossover, 2D→3D. Recently reported experimental results, which exhibit stable 3D and quasi-2D QDs in binary BECs, with the inter-component attraction slightly exceeding the MF self-repulsion in each component, and in single-component condensates of atoms carrying permanent magnetic moments, are presented in some detail. The summary of theoretical results is focused, chiefly, on 3D and quasi-2D QDs with embedded vorticity, as the possibility to stabilize such states is a remarkable prediction. Stable vortex states are presented both for QDs in free space, and for singular but physically relevant 2D modes pulled to the center by the inverse-square potential, with the quantum collapse suppressed by the LHY effect.  相似文献   

2.
Quantum dots (QDs), as novel fluorescence probes, have shown a great potential for bio-molecular labeling and cellular imaging. To stain cellular targets, the sufficient intracellular delivery of QDs is required. In this work the tat, a typical membrane-permeable carrier peptide, was conjugated with thiol-capped CdTe QDs to form CdTe Tat-QDs, and the intracellular deliveries of CdTe QDs or CdTe Tat-QDs were compared in human hepatocellular carcinoma (QGY) cells and human breast cancer (MCF7) cells in vitro by means of confocal laser scanning microscopy. Added into the cell dishes, both QDs and Tat-QDs adhered to the outer leaflet of the plasma membrane of cells within a few minutes, but the binding amount of Tat-QDs was obviously higher than that of QDs. Then both QDs and Tat-QDs can penetrate into cells, and their cellular contents increased with incubation time but both saturated after 3 hours incubation. However the cellular levels of Tat-QDs were higher than those of QDs, with the ratio of 2.1 (±0.3) times in QGY cells and 1.5 (±0.2) times in MCF7 cells, demonstrating the enhancing effect of Tat conjugation on the intracellular delivery of QDs.  相似文献   

3.
离心压气机转子内部流场S_1/S_2全三元迭代解   总被引:1,自引:0,他引:1  
为了比较准三元解和全三元解的差异,验证准三元解在计算离心压气机转子内部流场的准确程度,研究离心压气机转子内部流场全三元流动特性,本文对一有激光测量结果的高压比离心压气机[1]叶轮内部流场进行了全三元迭代计算,分析了S1/S2两类流面在叶轮通道内分布形态,比较了两类流面准三元解与全三元解的计算结果,讨论了无粘二次流的分布。并进一步和激光测量值及N-S三元直接解进行了详细的比较。  相似文献   

4.
Although water soluble thiol-capped quantum dots (QDs) have been widely used as photoluminescence (PL) probes in various applications, the negative charges on thiol terminals limit the cell uptake hindering their applications in cell imaging. The commercial liposome complex (Sofast®) was used to encapsulate these QDs forming the liposome vesicles with the loading efficiency as high as about 95%. The cell uptakes of unencapsulated QDs and QD loaded liposome vesicles were comparatively studied by a laser scanning confocal microscope. We found that QD loaded liposome vesicles can effectively enhance the intracellular delivery of QDs in three cell lines (human osteosarcoma cell line (U2OS); human cervical carcinoma cell line (Hela); human embryonic kidney cell line (293 T)). The photobleaching of encapsulated QDs in cells was also reduced comparing with that of unencapsulated QDs, measured by the PL decay of cellular QDs with a continuous laser irradiation in the microscope. The flow cytometric measurements further showed that the enhancing ratios of encapsulated QDs on cell uptake are about 4–8 times in 293 T and Hela cells. These results suggest that the cationic liposome encapsulation is an effective modality to enhance the intracellular delivery of thiol-capped QDs.  相似文献   

5.
Starting from the Gross-Pitaevskii energy functional of the 3D Bose-Einstein Condensate, we derive approximately the energy functional and the effective coupling constant of the quasi-2D condensate. The evolution of the quasi-2D condensate wave function is studied by a variational method. Low energy excitation spectra for both positive and negative scattering lengths are analyzed. The condition of collapse instability of a quasi-2D Bose gas with attractive particle interaction is also proposed. Received 31 October 2001 / Received in final form 1st March 2002 Published online 28 June 2002  相似文献   

6.
We study the consequences of Coulomb interactions on a system undergoing a putative first order phase transition. In two dimensions (2D), near the critical density, the system is universally unstable to the formation of new intermediate phases, which we call "electronic microemulsion phases," which consist of an intermediate scale mixture of regions of the two competing phases. A corollary is that there can be no direct transition as a function of density from a 2D Wigner crystal to a uniform electron liquid. In 3D, if the strength of the Coulomb interactions exceeds a critical value, no phase separation occurs, while for the weaker Coulomb strength electronic microemulsions are inevitable. This tendency is considerably more pronounced in anisotropic (quasi-2D or quasi-1D) systems, where a devil's staircase of transitions is possible.  相似文献   

7.
Recently, modifications of charge density wave(CDW) in two-dimensional(2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides(TMDCs). Optical, electrical transport measurements and scanning tunneling microscopy uncover the enormous difference on the many-body states when the thickness is reduced down to monolayer. However, the CDW in quasi-one-dimensional(1D) materials like transition metal trichalcogenides(TMTCs) is yet to be explored in low dimension whose mechanism is likely distinct from their quasi-2D counterparts.Here, we report a systematic study on the CDW properties of titanium trisulfide(TiS_3). Two phase transition temperatures were observed to decrease from 53 K(103 K) to 46 K(85 K) for the bulk and 15-nm thick nanoribbon, respectively,which arises from the increased fluctuation effect across the chain in the nanoribbon structure, thereby destroying the CDW coherence. It also suggests a strong anisotropy of CDW states in quasi-1D TMTCs which is different from that in TMDCs.Remarkably, by using back gate of-30 V ~ 70 V in 15-nm device, we can tune the second transition temperature from110 K(at-30 V) to 93 K(at 70 V) owing to the altered electron concentration. Finally, the optical approach through the impinging of laser beams on the sample surface is exploited to manipulate the CDW transition, where the melting of the CDW states shows a strong dependence on the excitation energy. Our results demonstrate TiS_3 as a promising quasi-1D CDW material and open up a new window for the study of collective phases in TMTCs.  相似文献   

8.
In order to study biological events, researchers commonly use methods based on fluorescence. These techniques generally use fluorescent probes, commonly small organic molecules or fluorescent proteins. However, these probes still present some drawbacks, limiting the detection. Semiconductor nanocrystals - Quantum Dots (QDs) - have emerged as an alternative tool to conventional fluorescent dyes in biological detection due to its topping properties - wide absorption cross section, brightness and high photostability. Some questions have emerged about the use of QDs for biological applications. Here, we use optical tools to study non-specific interactions between aqueous synthesized QDs and peripheral blood mononuclear cells. By fluorescence microscopy we observed that bare QDs can label cell membrane in live cells and also label intracellular compartments in artificially permeabilized cells, indicating that non-specific labeling of sub-structures inside the cells must be considered when investigating an internal target by specific conjugation. Since fluorescence microscopy and flow cytometry are complementary techniques (fluorescence microscopy provides a morphological image of a few samples and flow cytometry is a powerful technique to quantify biological events in a large number of cells), in this work we also used flow cytometry to investigate non-specific labeling. Moreover, by using optical tweezers, we observed that, after QDs incubation, zeta potentials in live cells changed to a less negative value, which may indicate that oxidative adverse effects were caused by QDs to the cells.  相似文献   

9.
Nanoprobe near-field photoluminescence (PL) of InGaAs(P) dots with quasi-zero-dimensional (quasi-0D) confinement with various degrees of 0D/2D has been investigated by studying probe-induced pressure effects and probe-bias effects. Fine PL peaks of 0D confinement are superimposed on quantum well (QW) peaks for quasi-0D structures, which proves the coexistence of 0D and two-dimensional (2D) confinement in the same layer. Large blue shifts of approximately 100 meV were observed to occur with pressure increase for 0D fine PL peaks, but no shift was observed for the QW peak. The fine 0D peaks were eliminated by larger probe-induced pressures, which should be attributed to carrier diffusion rather than to Γ–X crossover in energy levels. The QW peak increased with the positive probe bias, while 0D fine PL peaks showed a smaller increase with red shifts up to 8–9 meV. The results obtained can be explained by the excitation of immobile excitons in 0D potentials to mobile carriers in the 2D (QW) layer.  相似文献   

10.
The results of numerical study of physical characteristics (the pair and triplet correlation functions, the isothermal compressibility, the heat capacities, and the diffusion constants) are presented for quasi-2D dissipative Yukawa systems. The specific features of these characteristics (reflecting the two-stage melting scenario) are investigated.  相似文献   

11.
The growth of a three-dimensional (3D) InAs quantum dot (QD) crystal on a patterned GaAs (0 0 1) substrate is demonstrated. The morphology of QDs grown on a surface patterned with shallow holes is studied as a function of the amount of deposited InAs. We observe that the QDs form in the patterned holes close to each other forming lateral QD bimolecules for InAs coverages below the commonly observed critical thickness of 1.6 monolayers. When the coverage increases, the QD bimolecules coalesce to form larger single QDs. The QDs in the holes are then capped with a Ga(Al)As spacer. The buried QD array serves as a strain template for controlling the formation site of the QDs in the second layer. By tuning the growth conditions for the second and subsequent layers, we achieve a 3D InAs QD crystal with a high degree of perfection. A detail investigation of the growth on hole patterns with different periodicities is presented.  相似文献   

12.
When antimony (mostly Sb4) is deposited on highly oriented pyrolytic graphite (HOPG), in situ scanning tunneling microscopy images reveal that three-dimensional (3D) spherical islands, quasi-2D films and 1D nanowires (NWs) are formed. The spherical islands develop into faceted crystallites in the later growth stage. The lattice parameters of the 2D and 3D structures are close to those of α-Sb bulk, whereas the NWs appear in a compressed state. The Laplace pressure, which can reach the GPa range in a nanostructure, is considered the driving force for the compressive lattice structures of Sb NWs. We found conditions of controlling the dimensionality of Sb nanostructures in their self-assembly on HOPG to a certain extent. At room temperature and with a low Sb flux, 3D islands grow exclusively. At a substrate temperature of 100 °C, 2D and 1D structures are dominant when a high deposition flux is used, whereas only NWs are formed initially when a low flux is used. These results are explained in terms of different activation energies for Sb4 diffusion and conversion to a chemisorption or dissociation state on HOPG. As the temperature increases, the rate of conversion to the chemisorption or dissociation state increases more rapidly than that of diffusion since the chemisorption activation energy is much higher than the diffusion barrier of physisorbed Sb4, resulting in enhanced 2D and 1D structural nucleation and growth, which are further favored with the increase in deposition flux. The bonding nature of various Sb structures with a graphite surface and the conditions for growing aligned Sb NWs exclusively are discussed. PACS 61.46.+w; 64.70.Nd; 68.37.Ef; 68.65.-k; 81.07.-b  相似文献   

13.
We report the existence of self-organization in wet granular media or slurries, mixtures of particles of different sizes dispersed in a lower density liquid. As in the case of dry granular mixtures, axial banding (alternating bands rich in small and large particles in a long rotating cylinder) and radial segregation (in quasi-2D containers) are observed in slurries. However, when compared with the dry counterpart axial segregation is significantly faster and the spectrum of outcomes is richer. Moreover, experiments with suitable fluids reveal, for the first time, the internal structure of axially segregated systems, something that up to now has been accessible only via magnetic resonance imaging experimentation.  相似文献   

14.
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.  相似文献   

15.
We calculate the zero-temperature (T=0) phase diagram of a polarized two-component Fermi gas in an array of weakly coupled parallel one-dimensional (1D) "tubes" produced by a two-dimensional optical lattice. Increasing the lattice strength drives a crossover from three-dimensional (3D) to 1D behavior, stabilizing the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) modulated superfluid phase. We argue that the most promising regime for observing the FFLO phase is in the quasi-1D regime, where the atomic motion is largely 1D but there is weak tunneling in the other directions that stabilizes long-range order. In the FFLO phase, we describe a phase transition where the quasiparticle spectrum changes from gapless near the 3D regime to gapped in quasi-1D.  相似文献   

16.
By using a variational approach in combination with the adiabatic approximation we derive a new effective 1D equation of motion for the axial dynamics of elongated condensates. For condensates with vorticity ∣q∣ = 0 or 1, this equation coincides with our previous proposal [A. Muñoz Mateo, V. Delgado, Phys. Rev. A 77 (2008) 013617]. We also rederive the nonpolynomial Schrödinger equation (NPSE) in terms of the adiabatic approximation. This provides a unified treatment for obtaining the different effective equations and allows appreciating clearly the differences and similarities between the various proposals. We also obtain an expression for the axial healing length of cigar-shaped condensates and show that, in the local density approximation and in units of the axial oscillator length, it coincides with the inverse of the condensate axial half-length. From this result it immediately follows the necessary condition for the validity of the local density approximation. Finally, we obtain analytical formulas that give the frequency of the axial breathing mode with accuracy better than 1%. These formulas can be relevant from an experimental point of view since they can be expressed in terms only of the axial half-length and remain valid in the crossover between the Thomas-Fermi and the quasi-1D mean-field regimes. We have corroborated the validity of our results by numerically solving the full 3D Gross-Pitaevskii equation.  相似文献   

17.
We investigate the crossover from three to two dimensions for harmonically trapped hard-sphere Bose gases by varying the aspect ratio of the trapping potential. The diffusion Monte Carlo method is used to calculate both the ground-state energy and structural properties. The effect of trap anisotropy, interparticle interaction, and number of particles on the ground-state properties is discussed. Our results show that the minimum value of the aspect ratio at which the system reaches an asymptotic equilibrium distribution in the weakly confined direction decreases with increasing scattering length, while the minimum value of the aspect ratio at which the system enters the quasi-two-dimensional (2D) regime increases as both the scattering length and the number of particles increase. Additionally, the role played by particle correlations is proved to be more pronounced in the quasi-2D system than in the three-dimensional (3D) system by directly comparing the ground-state properties for the two cases.  相似文献   

18.
Dimensionality is a central concept in developing the theory of low-dimensional physics.However,previous research on dimensional crossover in the context of a Bose-Einstein condensate(BEC) has focused on the single-component BEC.To our best knowledge,further consideration of the two-component internal degrees of freedom on the effects of dimensional crossover is still lacking.In this work,we are motivated to investigate the dimensional crossover in a three-dimensional(3D) Rabi-coupled two-compon...  相似文献   

19.
The Luttinger surface of an organic metal (TTF-TCNQ), possessing charge order and spin-charge separated band dispersions, is investigated using temperature-dependent angle-resolved photoemission spectroscopy. The Luttinger surface topology, obtained from momentum distribution curves, changes from quasi-2D (dimensional) to quasi-1D with temperature. The high temperature quasi-2D surface exhibits 4kF charge-density-wave (CDW) superstructure in the TCNQ derived holon band, in the absence of 2kF order. Decreasing temperature results in quasi-1D nested 2kF CDW order in the TCNQ spinon band and in the TTF surface. The results establish the link in momentum space between charge order and spin-charge separation in a Luttinger liquid.  相似文献   

20.
We demonstrate that the three-dimensional (3D) binary monoclinic oxides HfO2 and ZrO2 exhibit quasi-2D polaron localization and conductivity, which results from a small difference in the coordination of two oxygen sublattices in these materials. The transition between a 2D large polaron into a zero-dimensional small polaron state requires overcoming a small energetic barrier. These results demonstrate how a small asymmetry in the lattice structure can determine the qualitative character of polaron localization and significantly broaden the realm of quasi-2D polaron systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号