首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用MOCVD技术在图形化Si(111)衬底上生长了InGaN/GaN绿光LED外延材料。在GaN量子垒的生长过程中,保持NH3流量不变,通过调节三乙基镓(TEGa)源的流量来改变垒生长速率,研究了量子垒生长速率对LED性能的影响。使用二次离子质谱仪(SIMS)和荧光显微镜(FLM)分别对量子阱的阱垒界面及晶体质量进行了表征,使用电致发光测试系统对LED光电性能进行了表征。实验结果表明,垒慢速生长,在整个测试电流密度范围内,外量子效率(EQE)明显提升。我们认为,小电流密度下,EQE的提升归结为量子阱晶体质量的改善;而大电流密度下,EQE的提升则归结为阱垒界面陡峭程度的提升。  相似文献   

2.
采用MOCVD技术在图形化硅衬底上生长了InGaN/GaN多量子阱黄光LED外延材料,研究了不同的量子阱生长气压对黄光LED光电性能的影响。使用高分辨率X射线衍射仪(HRXRD)和荧光显微镜(FL)对晶体质量进行了表征,使用电致发光系统积分球测试对光电性能进行了表征。结果表明:随着气压升高,In的并入量略有降低且均匀性更好,量子阱中的点缺陷数目降低,但是阱垒间界面质量有所下降。在实验选取的4个气压4,6.65,10,13.3 kPa下,外量子效率最大值随着量子阱生长气压的上升而显著升高,分别为16.60%、23.07%、26.40%、27.66%,但是13.3 kPa下生长的样品在大电流下EQE随电流droop效应有所加剧,在20 A·cm-2的工作电流下,样品A、B、C、D的EQE分别为16.60%、19.77%、20.03%、19.45%,10 kPa下生长的量子阱的整体光电性能最好。  相似文献   

3.
刘战辉  张李骊  李庆芳  张荣  修向前  谢自力  单云 《物理学报》2014,63(20):207304-207304
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.  相似文献   

4.
The tilted energy band in the multiple quantum wells(MQWs) arising from the polarization effect causes the quantum confined Stark effect(QCSE) for [0001] oriented III-nitride-based near ultraviolet light-emitting diodes(NUV LEDs). Here, we prove that the polarization effect in the MQWs for NUV LEDs can be self-screened once the polarization-induced bulk charges are employed by using the alloy-gradient In_xGa_(1-x)N quantum barriers. The numerical calculations demonstrate that the electric field in the quantum wells becomes weak and thereby flattens the energy band in the quantum wells, which accordingly increases the spatial overlap for the electron-hole wave functions. The polarization self-screening effect is further proven by observing the blueshift for the peak emission wavelength in the calculated and the measured emission spectra. Our results also indicate that for NUV LEDs with a small conduction band offset between the quantum well and the quantum barrier,the electron injection efficiency for the proposed structure becomes low. Therefore, we suggest doping the proposed quantum barrier structures with Mg dopants.  相似文献   

5.
利用Advanced Physical Models of Semiconductor Devices (APSYS)理论对比研究了InGaN/AlInGaN 和 InGaN/GaN多量子阱作为有源层的InGaN基发光二极管的结构和电学特性。与InGaN/GaN 基LED 中GaN作为垒层材料相比,在AlInGaN材料体系中,通过调节AlInGaN中Al和In的组分可以优化器件的性能。当InGaN阱层材料中In组分为8%时,可以实现无应力的In0.08Ga0.92N/AlInGaN基 LED。在这种无应力结构中可以进一步降低大功率LED的"效率下降"(Effciency droop)问题。理论模拟结果显示,四元系AlInGaN作为垒层可以进一步减少载流子泄露,增加空穴注入效率,减少极化场对器件性能的影响。在In0.08Ga0.92N /AlInGaN量子阱中的载流子浓度、有源层的辐射复合率、电流特性曲线和内量子效率等方面都优于InGaN/GaN基LED。无应变AlInGaN垒层代替传统的GaN垒层后,能够得到高效的发光二极管,并且大电流注入下的"效率滚降"问题得到改善。  相似文献   

6.
GaN-based blue light emitting diodes(LEDs) have undergone great development in recent years,but the improvement of green LEDs is still in progress.Currently,the external quantum efficiency(EQE) of GaN-based green LEDs is typically30%,which is much lower than that of top-level blue LEDs.The current challenge with regard to GaN-based green LEDs is to grow a high quality In GaN quantum well(QW) with low strain.Many techniques of improving efficiency are discussed,such as inserting Al GaN between the QW and the barrier,employing prestrained layers beneath the QW and growing semipolar QW.The recent progress of GaN-based green LEDs on Si substrate is also reported:high efficiency,high power green LEDs on Si substrate with 45.2% IQE at 35 A/cm2,and the relevant techniques are detailed.  相似文献   

7.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

8.
InGaN-based multiple quantum wells (MQWs) yellow light-emitting diodes (LEDs) were grown on Si substrate by metal organic vapor deposition. Blue MQWs were introduced as strain modulation layers for yellow MQWs. The LED chips emitted 72-mW yellow light with 566-nm dominant wavelength and 9.4 % external quantum efficiency (EQE) at 350 mA under room temperature, and it reached a peak EQE of 22.2 % at 0.7 mA. A comparison sample without strain modulation layers exhibited much weaker performance. The results reveal that long-wavelength emission of InGaN system is reliable if the strain of MQWs has been properly modulated.  相似文献   

9.
张正宜  王超 《发光学报》2018,39(10):1445-1450
势垒硅掺杂对InGaN量子阱中的电场及LED器件的光电性能有着重要的影响。采用6×6 K·P方法计算了不同势垒硅掺杂浓度对量子阱中电场的变化,研究表明当势垒硅掺杂浓度>1e18 cm-3时,阱垒界面处的电场强度会变大,这主要是由于硅掺杂浓度过高导致量子阱中界面电荷的聚集。进一步发现随着势垒掺杂浓度的升高,总非辐射复合随之增加,其中俄歇复合增加,而肖克莱-霍尔-里德复合随之减少,这是由于点陷阱的增大形成了缺陷能级。电流电压曲线表明势垒掺杂可有效改善GaN基LED的工作电压,这归于掺杂浓度的提高改善了载流子的传输特性。当掺杂浓度为1e18 cm-3时,获得了较高的内量子效率,这主要是由于适当的势垒掺杂降低了量子阱中界面电荷的损耗。  相似文献   

10.
利用金属有机物化学气相沉积系统在蓝宝石衬底上通过有源层的变温生长,得到In组分渐变的量子阱结构,从而获得具有三角形能带结构的InGaN/GaN多量子阱发光二极管(LED)(简称三角形量子阱结构LED).变温光致发光谱结果表明,相对于传统具有方形能带结构的量子阱LED(简称方形量子阱结构LED),三角形量子阱结构有效提高了量子阱中电子和空穴波函数的空间交叠,从而增加了LED的内量子效率;电致发光谱结果表明,三角形量子阱结构LED器件与传统结构LED器件相比,明显改善了发光峰值波长随着电流的蓝移现象.通过以上  相似文献   

11.
We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulation program.The internal quantum efficiencies(IQEs),light output powers,carrier concentrations in the quantum wells,energy-band diagrams,and electrostatic fields are analyzed carefully.The results indicate that the LEDs with composition-graded pAl_xGa_(1-x)N irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs.The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface,which results in less electron leakage and better hole injection efficiency,thus reducing efficiency droop and enhancing the radiative recombination rate.  相似文献   

12.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

13.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

14.
Gallium nitride(Ga N) based light-emitting diodes(LEDs) with chirped multiple quantum well(MQW) structures have been investigated experimentally and numerically in this paper. Compared to conventional LEDs with uniform quantum wells(QWs), LEDs with chirped MQW structures have better internal quantum efficiency(IQE) and carrier injection efficiency. The droop ratios of LEDs with chirped MQW structures show a remarkable improvement at 600 m A/mm2,reduced down from 28.6%(conventional uniform LEDs) to 23.7%(chirped MQWs-a) and 18.6%(chirped MQWs-b),respectively. Meanwhile, the peak IQE increases from 76.9%(uniform LEDs) to 83.7%(chirped MQWs-a) and 88.6%(chirped MQWs-b). The reservoir effect of chirped MQW structures is the significant reason as it could increase hole injection efficiency and radiative recombination. The leakage current and Auger recombination of chirped MQW structures can also be suppressed. Furthermore, the chirped MQWs-b structure with lower potential barriers can enhance the reservoir effect and obtain further improvement of the carrier injection efficiency and radiative recombination, as well as further suppressing efficiency droop.  相似文献   

15.
The influence of irradiation in a scanning electron microscope on the optical properties inherent to light-emitting diodes (LEDs) with multiple InGaN/GaN quantum wells, assembled by means of the flip-chip mounting technique, has been investigated via the cathodoluminescence (CL) and electron-beam-induced current methods. It is demonstrated that the action of an electron beam qualitatively varies both these LEDs and structures with a thin upper GaN layer only at large beam energies. It has been revealed that irradiation not only leads to changes in the spectrum and intensity of CL but also decreases the energy corresponding to the excitation of emission associated with quantum wells. A similar effect is also observed in structures whose external quantum efficiency has been decreased several times due to long-running tests performed at an injection current density of 35 A/cm2 and a temperature of 100°C.  相似文献   

16.
金属有机化学气相沉积(MOCVD)方法制备InGaN/GaN多量子阱结构时,在GaN势垒层生长的N2载气中引入适量H2,能够有效改善阱/垒界面质量从而提升发光效率.本工作利用光致发光(PL)光谱技术,对蓝光激光器结构中的InGaN/GaN多量子阱的发光性能进行了精细的光谱学测量与表征,研究了通H2生长对量子阱界面的调控...  相似文献   

17.
We report an investigation of the interface quality of the Al0.2Ga0.8As/GaAs triple quantum wells (QWs) grown on the GaAs substrates 0° and 6° off (100) towards 〈111〉A at a high CO environment, using the photoluminescence technique. The direct correlation between the quantum well quality and the performance of lasers which contain such quantum wells as an active region is also reported. It is found that impurity-related photoluminescence is observed only in the sample grown on the exact (100) GaAs substrate but not in the tilted one, as confirmed by temperature dependence results. The full width at half maximum (FWHM) of the intrinsic luminescence is as high as 9.0 meV in the 0° tilted samples and decreases to 3.10 meV in the samples misoriented 6°, indicating a remarkable difference in their interface quality. The impurities incorporated into the interfaces of the QWs are carbon, incorporation of which becomes unobservable by photoluminescence when the quantum wells are grown on substrates misoriented by 6° degrees. The threshold current and quantum efficiency of the laser devices with Al0.2Ga0.8As/GaAs quantum wells as their active region are found to be directly related to the interfacial quality of the quantum wells.  相似文献   

18.
刘扬  杨永春 《中国物理 B》2016,25(5):58101-058101
The effects of Mg doping in the quantum barriers(QBs) on the efficiency droop of GaN based light emitting diodes(LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells(QWs), both may reduce the efficiency droop. However,heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop.  相似文献   

19.
为了研究AlGaN量子阱层和垒层中Al组分不同对AlGaN基深紫外发光二极管(LED)光电性能的影响,本文利用MOCVD生长、光刻和干法刻蚀工艺制备了AlGaN量子阱层和垒层具有不同Al组分的270/290/330nm深紫外LED,通过实验和数值模拟计算方法发现,量子阱层和垒层中具有低Al组分紫外LED的AlGaN材料具有较低的位错密度、较高的光输出功率和外量子效率。通过电流-电压(I-V)曲线拟合出的较大的理想因子(3.5)和能带结构图表明,AlGaN深紫外LED的电流产生是隧穿机制占据主导作用,这是因为高Al组分AlGaN量子阱中强极化场造成了有源层区域较大的能带弯曲和电势降。  相似文献   

20.
郭敏  郭志友  黄晶  刘洋  姚舜禹 《中国物理 B》2017,26(2):28502-028502
In Ga N light-emitting diodes(LEDs) with Ga N/In Ga N/Al Ga N/In Ga N/Ga N composition-graded barriers are proposed to replace the sixth and the middle five Ga N barriers under the condition of removing the electron blocking layer(EBL)and studied numerically in this paper. Simulation results show that the specially designed barrier in the sixth barrier is able to modulate the distributions of the holes and electrons in quantum well which is adjacent to the specially designed barrier. Concretely speaking, the new barrier could enhance both the electron and hole concentration remarkably in the previous well and reduce the hole concentration for the latter one to some extent along the growth direction. What is more,a phenomenon, i.e., a better carrier distribution in all the wells, just appears with the adoption of the new barriers in the middle five barriers, resulting in a much higher light output power and a lower efficiency droop than those in a conventional LED structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号