首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
超薄电子器件的蓬勃发展和日益增长的人性化需求极大促进了可穿戴柔性微器件的发展,但是沉积电极材料在柔性基板上的技术仍处于起步阶段. 本文通过结合四面体制备器辅助涂层法和激光切割叉指构型技术,大规模地将碳纳米管沉积到商用印刷纸上作为电极,切割组装获得了柔性对称微型超级电容器. 制得的微型超级电容器的电化学性能可以通过简单地选择不同的四面体制备器模型制备不同厚度的碳纳米管薄膜进行调控. 优化获得的碳纳米管薄膜基微型超级电容器在0.02 mA的电流下,具有高达4.56 mF/cm2的面电容. 微型超级电容器经过连续10000次循环,器件的性能仍然可以保持接近100%. 四面体制备器辅助涂层方法和激光切割叉指构型技术为制备经济的微电子器件提供了新的视角. 附着碳纳米管的纸电极实现了可调控的面电容,在未来制备平面构型的不对称微超级电容器方面展示了广阔的应用前景.  相似文献   

2.
随着柔性电子产品的不断发展,纤维状超级电容器(fiber-shaped supercapacitors, FSCs)凭借其重量轻、体积可控、弯曲拉伸性能好、可编织等优点引起了广泛关注. FSCs凭借着独特的一维纤维结构,可以与其他各类用电器件和发电器件等复合成多功能集成柔性电子器件,在可穿戴电子织物领域有着巨大的应用前景,被人们寄予了厚望.本文叙述了FSCs的最新进展,首先介绍了不同的纤维基底并分析了各自的优缺点;接着,总结了用于FSCs的碳材料、金属氧化物、金属硫化物、导电聚合物和混合纳米复合材料等电极材料,通过分析不同电极材料之间的区别和特性,表明不同的电极材料适用于不同用途的FSCs;然后,总结了FSCs在与其他元器件复合形成集成器件方面的应用,包括与一般用电器件、传感器、其他光电转化等发电器件集合成复合器件并应用到实际场景;最后,通过总结近年来FSCs研究所取得的成果,概述该领域当前面临的挑战,针对性地提出了目前FSCs发展的瓶颈和问题,并提出了对未来发展方向的设想和建议.  相似文献   

3.
正1.引言超级电容器是一种介于传统电容器和二次电池之间的新型电化学储能元件,它拥有功率密度高、充放电速率快、环境友好、温度特性好及使用寿命长等优点(表1),已在备用电源系统、便携式电子设备和电动汽车领域有广泛的应用。众所周知,电极材料是超级电容器的关键所在,它决定着电容器的主要性能指标,如能量密度、功率密度和循环稳定性等,所以制备合成具有优异性能的电极材料成为超级电容器研究的核心课题。目前,超级电容器的电极材料主要可以分为三类:碳基材料、过渡金属化合物和导电聚合物如图1  相似文献   

4.
可拉伸导体因能够适应较大的变形以及与三维不规则表面实现无缝接触,受到了广泛关注,在信息、能源、医疗、国防等领域具有广阔的应用前景.在过去的几十年中,人们开发出了很多性能优异的导电纳米材料,如金属纳米线、碳纳米管、石墨烯和导电聚合物等.将导电纳米填料均匀分散到聚合物基质中是制备弹性导体的一种有效方法,可以实现导电性和拉伸性;另一种方法则是对导电复合物进行结构设计,引入可拉伸结构(如褶皱,网型,蛇形等),实现大形变下的性能稳定.本文主要总结了近五年来在弹性导体领域的最新进展,并指出了当前弹性导体领域存在的挑战.另外还讨论了一些柔性电子器件,如发光二极管、传感器、加热器等的研究现状,指明了柔性电子器件的发展趋势.  相似文献   

5.
传统高分子聚合物是良好的电绝缘体和热绝缘体.高分子聚合物具备质量轻、耐腐蚀、可加工、可穿戴、电绝缘、低成本等优异特性.高分子聚合物被广泛应用于各种器件.由于高分子材料的热导率比较低(0.1—0.5 W·m-1·K-1),热管理(散热)面临严峻的挑战.理论及实验工作表明,先进高分子材料可以具有比传统传热材料(金属和陶瓷)更高热导率. Fermi-Pasta-Ulam (FPU)理论结果发现低维度原子链具有非常高的热导率.广泛使用的聚乙烯热绝缘体可以被转变为热导体:拉伸聚乙烯纳米纤维的热导率大约为104 W·m-1·K-1,拉伸的聚乙烯薄膜热导率大约为62 W·m-1·K-1.首先,本文通过理论和实验结果总结导热高分子材料的传热机理研究进展,并讨论了导热高分子聚合物的制备策略;然后,讨论了在传热机制及宏量制备方面,高分子聚合物研究领域所面临的新挑战;最后,对导热高分子的热管理应用前景进行了展望.例如,导热高分子聚合物在耐腐蚀散热片、低成本太阳能热水收集器、可穿...  相似文献   

6.
巫梦丹  周胜林  叶安娜  王敏  张晓华  杨朝晖 《物理学报》2019,68(10):108201-108201
随着科技发展和时代进步,发展质轻便携、安全环保的高性能储能器件变得日趋重要,对柔性固态超级电容器的研究也应运而生.柔性电极材料及电解质的选用是设计柔性固态超级电容器的关键因素,近年来一直是研究的热点.考虑到环境污染及实际需求问题,本文采用中性凝胶电解质对具有高比表面积、良好导电性及取向性的碳纳米管阵列进行包埋处理,所形成的柔性复合薄膜作为电极材料,设计制备三明治结构的柔性超级电容器件.通过改变凝胶电解质中所加入的无机盐电解质种类,调控器件的电化学储能性质.最终在聚乙烯醇PVA-NaCl作为凝胶电解质时,整个器件比容量最高达104.5 mF·cm~(–3),远高于有机离子凝胶与碳管阵列形成的复合器件以及无规分布的碳纳米管与水凝胶形成的复合器件,同时获得了0.034 mW·h·cm~(–3)的最大能量密度,并且具有良好的倍率性能、循环稳定性及抑制自放电的效果,并在高电压1.6 V下依然保持良好的化学稳定性.这种中性凝胶/碳管阵列复合超级电容器件不仅满足了绿色安全、柔性便携的要求,未来在医学可植入器件等领域也具有很好的应用前景.  相似文献   

7.
全湿法制备聚合物电致发光器件   总被引:1,自引:1,他引:0       下载免费PDF全文
利用全溶液方法制备了聚合物电致发光器件并研究了器件的性能。器件的所有膜层,包括发光层和上电极层均采用溶液湿法获得,完全摒弃了真空蒸镀工艺。利用二次溶剂掺杂获得的PEDOT∶PSS聚合物薄膜的电导率达到608.7 S/cm。在240 nm的厚度时,聚合物电极膜层的面电阻约为68 Ω/□; 当膜层厚度为1 μm时,薄膜的面电阻可低于16 Ω/□。采用溶液滴涂方法制备的高电导PEDOT∶PSS聚合物薄膜作为上电极替代通常所用的铝电极,所制备的聚合物发光器件的开启电压约为4 V。  相似文献   

8.
本文制备的三维多孔结构FeC_2O_4/石墨烯复合材料,在不添加粘结剂时可作为超级电容器电极.复合材料由大孔石墨烯和微介孔FeC_2O_4组成.通常,水分解电压为1.23 V,对于以水系为电解液的不对称超级电容器,电压窗口限制为2V.当以FeC_2O_4/rGO水凝胶作为负极,以纯rGO水凝胶作为正极时,在KOH(1.0mol/L)电解质中不对称超级电容器电压窗为1.7 V,在中性Na_2SO_4(1.0 mol/L)电解质中可达到2.5 V,相应地,组装的非对称电容器性能优异,能量密度为59.7 Wh/kg.通过将具有微介孔结构的金属氧化物与石墨烯相结合,制备在不添加导电剂和粘合剂时直接用于组装不对称超级电容器的电极材料.  相似文献   

9.
超级电容器以功率密度高、寿命长、环境友好等优点在各种能量存储设备中受到广泛关注.所以,提高电极材料的储能性能对超级电容器的开发与应用具有重要的意义.具有特定纳米结构的功能材料作为超级电容器电极材料时具有优异的电化学性能,原因在于其能提供丰富的电化学活性位点、高的比表面积和增加电解质与材料的接触面积.因此,本文以ZIF-67纳米晶为模板,利用硝酸盐刻蚀的方法制备中空笼状镍钴层状氢氧化物(NiCo-LDH),并研究其作为超级电容器电极材料的储能性能.借助X射线衍射、扫描电镜、透射电镜、低温氮气吸附/脱附和电化学测试等手段分析所得NiCo-LDH的结构、形貌和电化学性能.结果表明:NiCo-LDH由纳米片组装形成中空笼状结构,拥有丰富的介孔和大孔孔道以及较高的比表面积,从而有助于增加电活性位点,促使电解液与电极材料的充分接触,进而显著提高材料的储能性能.当刻蚀用镍、钴盐质量比为1:1时,样品Ni1Co1-LDH的比电容可达801 F·g-1(电流密度为0.5 A·g-1),且在大电流密度下(10 A·g<...  相似文献   

10.
本文制备的三维多孔结构FeC2O4/石墨烯复合材料,在不添加粘结剂时可作为超级电容器电极. 复合材料由大孔石墨烯和微介孔FeC2O4组成. 通常,水分解电压为1.23 V,对于以水系为电解液的不对称超级电容器,电压窗口限制为2 V. 当以FeC2O4/rGO水凝胶作为负极,以纯rGO水凝胶作为正极时,在KOH(1.0 mol/L)电解质中不对称超级电容器电压窗为1.7 V,在中性Na2SO4(1.0 mol/L)电解质中可达到2.5 V,相应地,组装的非对称电容器性能优异,能量密度为59.7 Wh/kg. 通过将具有微介孔结构的金属氧化物与石墨烯相结合,制备在不添加导电剂和粘合剂时直接用于组装不对称超级电容器的电极材料.  相似文献   

11.
近年来,伴随着柔性电子产业的快速发展,发光显示作为可穿戴集成器件中必不可少的组成部分,人们对其提出了柔性、可拉伸性、自愈合性等额外的需求。基于硫化锌材料的电致发光器件由于发光寿命长、发光组件结构简单等优点,在智能可穿戴领域得到了广泛的研究和关注。本文对硫化锌电致发光材料在智能可穿戴领域的研究进展进行梳理和总结,主要介绍了硫化锌电致发光材料的发光机理、研究热点及未来应用,以期对智能可穿戴领域起到有益的启示和指导作用。  相似文献   

12.
李卫民  郭金川  孙秀泉  周彬 《光子学报》2009,38(7):1621-1625
在分析有机聚合物复合体光伏电池机理及等效电路模型基础上,研究了界面旋涂缓冲层对聚合物给体/受体复合体结构光伏器件性能的影响.制备了基于P3HT/PCBM的给体 受体复合体薄膜有机光伏电池,并分别在有机活性层和ITO基底之间以及有机活性层和电极之间插入TFB和F8BT缓冲层.实验证明:在ITO和活性层之间旋涂TFB作为阳极缓冲层,可增加有机聚合物光伏器件的短路电流,在活性层和电极之间插入F8BT作为阴极缓冲层,可增大光伏器件的开路电压,提高器件的转换效率.  相似文献   

13.
通过电化学的方法在钛网上制备了聚吡咯与石墨烯的复合物薄膜,其过程是先在钛网上通过自组装干燥膜法附着上石墨烯氧化物膜,而后采用电化学还原的方法原位还原制备得到石墨烯膜,随后加入吡咯单体,再通过电化学聚合的方法在石墨烯的表面生长聚吡咯,得到的聚吡咯开始以颗粒的形式存在,而后随着聚合的进行得到了链状的聚吡咯.得到的复合膜有高的比表面积和导电性,可以作为电极活性材料用于超级电容器中提供赝电容,结果表明,复合膜作为电极材料的超级电容器拥有高的性能,比电容达400 F/g,并且电极的充放电稳定性高,5000次复合膜充放电循环后比电容还能保留82%,说明该材料适合于超级电容器.  相似文献   

14.
《物理》2020,(8)
柔性电子学器件在未来消费电子领域有巨大的应用前景,更是消费升级和社会进步的必然需求,在可穿戴传感、柔性显示、电子皮肤和可植入医疗等领域有着广泛的应用前景。柔性透明高压二极管器件在构建一体化光伏系统和自供电可穿戴设备的能源管理电路中有着巨大的应用潜力。文章首先设计并制作了一种新颖的柔性透明Zn O场效应二极管,其整流比可高达108,漏电流低至10-15A/μm,且制备工艺和普通TFT完全兼容。通过引入特定尺寸的错排(offset)区域,进一步制备了击穿电压最高可达150 V的柔性透明高压二极管;利用4个单元器件组合成柔性高压全波整流电路,成功地将摩擦纳米发电机产生的高压交流电整流为直流电,存储到超级电容器中。柔性光电探测器因具有轻便耐用、柔软便携、可与非平面组织贴合等独特优势,逐渐成为光电探测技术发展的一个新方向。通过微量调控生长过程中的氧流量,系统研究了柔性非晶Ga_2O_3日盲紫外探测器和X射线探测器的性能与材料制备过程中氧分压的对应关系,实现了对器件响应度和响应速度的调控,并给出了相应的物理模型;通过器件结构的设计与材料物性的调控,器件的性能得到了大幅提升,并显示出良好的耐高压、耐辐照和弯曲特性。  相似文献   

15.
朱畦  袁协涛  诸翊豪  张晓华  杨朝晖 《物理学报》2018,67(2):28201-028201
柔性超级电容器因其加工方式灵活,具有高的能量密度和可剪裁可弯曲的特性,近年来受到广泛的关注.碳纳米管阵列凭借其自身良好的电化学性能、高效的电荷转移率和良好的循环寿命被视为理想的能量储存材料.然而原始碳纳米管阵列密度较小,且因管间较弱的相互作用力使得其在加工和转移过程中容易倒塌散落,从而限制了碳纳米管阵列直接用于组装柔性电子器件.本文应用无水乙醇对阵列进行收缩处理,在保持阵列高度取向优势的前提下大大增加了阵列的密度和机械强度,同时使用生物相容性好的聚乙烯醇(PVA)导电凝胶包埋碳纳米管阵列来制备柔性固态超级电容器件.PVA包埋的阵列复合体在折叠、弯曲过程中既能保持良好的机械稳定性和柔性,又能保持碳纳米管的高度取向性.使用原位电氧化对碳纳米管阵列外壁进行简单的电化学修饰,可以进一步提高该复合器件的性能.该方法为未来研发可穿戴电子器件以及可植入医学器件提供了新思路.  相似文献   

16.
忆阻器和能量存储电容器具有相同的三明治结构,然而两个器件需要的操作电压有明显差异,因此在同一个器件中,研究操作电压的影响因素并对操作电压进行调控,实现器件在不同领域的应用是十分必要的一个工作.本文利用反应磁控溅射技术在ITO导电玻璃、Pt/Si基底上生长了多晶ZrO_2和非晶TaO_x薄膜,选用不同金属材料Au, Ag和Al用作上电极构建了多种金属/氧化物介质/金属三明治结构的电容器,研究了器件在不同偏压极性下的击穿强度.结果发现:底电极是ITO的ZrO_2基电容器在负偏压下的击穿电场比Pt电极器件稍大.不管底电极是ITO还是Pt, Ag作为上电极时器件的击穿强度均存在明显的偏压极性依赖性,正偏压下的击穿电场减小了一个数量级;相反,在Al作为上电极的Al/TaO_x/Pt器件中,正向偏压比负向偏压下的击穿电场增加了近2倍.上述器件的不同击穿行为分别可以由氧化物电极和介质界面层间氧的迁移和重排、电化学活性金属电极的溶解迁移和还原以及化学活性金属电极与氧化物界面的氧化还原反应来解释.该实验结果对有不同操作电压要求的器件,如忆阻器和介质储能电容器等在器件设计和操作方面具有指导意义.  相似文献   

17.
电化学超级电容器电极材料的研究进展   总被引:1,自引:0,他引:1  
张熊  马衍伟 《物理》2011,40(10):656-663
超级电容器是一种利用电化学双电层储能或在电极材料表面及近表面发生快速可逆氧化还原反应而储能的装置,具有高的比功率、比能量和长的循环寿命.文章综述了超级电容器电极材料的储能机理、特点及应用,并重点介绍了石墨烯、二氧化锰及其复合电极材料在超级电容器中应用的最新研究进展.  相似文献   

18.
杨冰洋  何大伟  王永生 《物理学报》2015,64(10):108801-108801
采用Bathocuproine/Ag (BCP/Ag)复合电极代替Ca/Al复合电极, 制备PTB7:PC71BM 作为光敏层的聚合物光伏器件, 并通过改变BCP薄膜厚度来研究BCP/Ag复合电极对于器件光电转换器和稳定性的影响. 研究发现: 在光敏层和金属电极之间插入BCP修饰层后, 器件性能得到了显著的改善, 在BCP厚度为5 nm时, 器件的效率达到了6.82%, 且略高于Ca/Al复合电极的器件效率; 相比于采用Ca/Al复合电极的器件, BCP/Ag复合电极增大了器件的短路电流和外量子效率, 使器件效率得到提高; 同时器件的稳定性得到了显著的改善, BCP/Ag 复合电极器件的衰减速率几乎和未插入BCP的器件衰减速率相同, 相对于Ca/Al复合电极器件大幅提高.  相似文献   

19.
《物理》2017,(7)
<正>超级电容器,又称电化学电容器,是一种新型电化学储能器件,具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源、免维护、绿色环保等特点~([1])。然而,随着便携式电子设备不断趋于轻薄化、小型化,传统堆叠结构的超级电容器(通常由两个基底、电极、隔膜和集流体构成)体积较大,机械柔韧性差,已不能满足与未来高度集成化、轻量便携化和智能化电子器件相兼容的需求,因此迫切需要发展与其匹配的新型微纳储能器件~([2,3])。与传统超级电容器不同,平  相似文献   

20.
张诚  邓明森  蔡绍洪 《物理学报》2017,66(12):128201-128201
在众多能量存储和转化器件中,超级电容器由于具有功率密度高、充放电迅速和优异的循环性能的优点而被广泛研究.然而,较低的比容量和能量密度,限制了超级电容作为大尺度能量存储和转化器件的广泛应用.为了提高超级电容器的比容量,需要增大电极材料和电解质的接触面积,进而促进电极材料俘获/释放电解质中的粒子(例如电子、离子或者小分子).在此,我们通过简单的水热法联合高温退火实验方案能够大规模制备出镍泡沫支撑的Co_3O_4多孔纳米结构.无需借助导电胶和粘合剂,在集流器镍泡沫上"生长"Co_3O_4多孔纳米结构直接作为超级电容的电极材料.这种多孔纳米结构和一体化设计思路不仅能够有效提高电极的导电性,而且能够有效缩短离子和电子的迁移路径.由于多孔的结构特征和优异的导电性能,Co_3O_4电极表现出超高比容量(在电流密度为2.5 m A·cm~(-2)和5.5 m A·cm~(-2)时,比容量分别为1.87 F·cm(-2)(936 F·g-1)和1.80 F·cm~(-2)(907 F·g-1))、较好的倍率性能(电流密度从2.5 m A·cm~(-2)增大到100 m A·cm~(-2)时,保留其48.37%的初始电容)和超高的循环稳定性(经历4000次电流密度为10 m A·cm~(-2)的循环充放电过程,保留其92.3%的比容量).这种多孔纳米结构和一体化设计思路对设计其他高性能储能器件具有重要的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号