首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We prove that the extension theory for lattice Green's functions can be used to study Heisenberg ferromagnetic systems. As an example, the magnon spectrum of a ferromagnetic superlat tice is calculated by the extension theory for lattice Green's functions cooperated with the transfer matrix technique. The spectrum of magnetic excitation near the surface of a ferromagnetic superlattice is also presented.  相似文献   

2.
In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.  相似文献   

3.
Electrons moving in a conductor can transfer momentum to the lattice via collisions with impurities and boundaries, giving rise to a fluctuating mechanical stress tensor. The root-mean-squared momentum transfer per scattering event in a disordered metal (of dimension L greater than the mean-free path l and screening length xi) is found to be reduced below the Fermi momentum by a factor of order l/L for shear fluctuations and (xi/L)(2) for pressure fluctuations. The excitation of an elastic bending mode by the shear fluctuations is estimated to fall within current experimental sensitivity for a nanomechanical oscillator.  相似文献   

4.
We consider the incoherent energy transport in molecular crystals, where the transfer rates stem from Coulombic and exchange interactions. For substitutionally disordered lattices we present in a first passage model the excitation decay due to trapping by randomly distributed traps; the decay is related to the distribution of the number of distinct sites visited during the timet and is expressible through the cumulants of this distribution. The validity domains of approximate decay laws based on the first few cumulants are also discussed. We exemplify the findings for dipolar transfer rates between randomly distributed molecules on a square lattice, by comparing the random walk on the random system to its CTRW (continuous time random walk) counterpart.  相似文献   

5.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

6.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

7.
程留永  郑黎娜  吴瑞祥  王洪福  张寿 《中国物理 B》2022,31(2):20305-020305
We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.  相似文献   

8.
By finite difference time domain method, a channel drop filter with four-port is designed, analyzed, and theoretically simulated in the hetero-woodpile-structure. Hetero-woodpile-structure includes three parts namely, along the propagation direction, the constant lattice in the core woodpile is different from two cladding woodpiles. This channel drop filter is comprised of two straight waveguides separated by an air-cavity in the same layer. Through simulations, we found that adjustment of the resonant-mode in heterostructure can be achieved in various ways, such as only changing the lattice constants, or changing both lattice constants, and the cavity size. The results also show that this structure can realize the energy transfer between bus and drop waveguides.  相似文献   

9.
袁宗强  褚敏  郑志刚 《物理学报》2013,62(8):80504-080504
Fermi-Pasta-Ulam (FPU) β格点链中能量输运的载流子是孤子还是声子一直存在较多的争议. 本文通过单脉冲方法, 明确了一个能量波包在该格点链系统中从声子波包转变成为孤子波包的条件, 即波包能量达到一定阈值. 基于纯四次势链的声子真空效应, 构造了由FPU-β链与纯四次势链构成的双段链系统. 通过对比研究双段链系统和单段FPU-β链中的热流, 发现低温下声子是FPU-β链中能量的主要载流子, 而随着温度的升高孤子逐步取代声子成为能量的主要载流子. 关键词: Fermi-Pasta-Ulam格点链 声子 孤子 热传导  相似文献   

10.
We report the experimental demonstration of storing optical information as a mechanical excitation in a silica optomechanical resonator. We use writing and readout laser pulses tuned to one mechanical frequency below an optical cavity resonance to control the coupling between the mechanical displacement and the optical field at the cavity resonance. The writing pulse maps a signal pulse at the cavity resonance to a mechanical excitation. The readout pulse later converts the mechanical excitation back to an optical pulse. The storage lifetime is determined by the relatively long damping time of the mechanical excitation.  相似文献   

11.
We study a nonlinear Glauber-Fock lattice and the conditions for the excitation of localized structures. We investigate the particular linear properties of these lattices, including linear localized modes. We investigate numerically nonlinear modes centered in each site of the lattice. We found a strong disagreement of the general tendency between the stationary and the dynamical excitation thresholds. We define a new parameter that takes into account the stationary and dynamical properties of localized excitations.  相似文献   

12.
Lou C  Xu J  Tang L  Chen Z  Kevrekidis PG 《Optics letters》2006,31(4):492-494
We study the dynamics of off-site excitation in an optically induced waveguide lattice. A single beam centered between two waveguides leads to an asymmetric beam profile as the nonlinearity reaches a threshold. When two probe beams are launched in parallel into two nearby off-site locations, they form symmetric or antisymmetric (twisted) soliton states, depending on their relative phase. A transition of intensity pattern from on-site to off-site locations is also observed as the lattice is excited by a quasi-one-dimensional plane wave.  相似文献   

13.
Jin-Qi Wang 《中国物理 B》2022,31(9):90601-090601
Sideband cooling is a key technique for improving the performance of optical atomic clocks by preparing cold atoms and single ions into the ground vibrational state. In this work, we demonstrate detailed experimental research on pulsed Raman sideband cooling in a $^{171}$Yb optical lattice clock. A sequence comprised of interleaved 578 nm cooling pulses resonant on the 1st-order red sideband and 1388 nm repumping pulses is carried out to transfer atoms into the motional ground state. We successfully decrease the axial temperature of atoms in the lattice from 6.5 μK to less than 0.8 μK in the trap depth of 24 μK, corresponding to an average axial motional quantum number $\langle n_z\rangle<0.03$. Rabi oscillation spectroscopy is measured to evaluate the effect of sideband cooling on inhomogeneous excitation. The maximum excitation fraction is increased from 0.8 to 0.86, indicating an enhancement in the quantum coherence of the ensemble. Our work will contribute to improving the instability and uncertainty of Yb lattice clocks.  相似文献   

14.
A theory of non-radiative transfer of excitation energy in solids is elaborated for the case of strong interaction of an atom of the sensitizer and an atom of the activator with the oscillations of the whole crystal lattice.  相似文献   

15.
Direct radiative neutron capture onto a nucleus embedded in a lattice leads to recoil effects that are somewhat more complicated in principle than those present for conventional Mössbauer absorption, emission or resonant scattering processes. We have explored the theory for such recoil effects, and have found: (1) that under conditions in which the momentum of the incident neutron and emitted gamma are matched approximately, a Mössbauer pip that is broadened and shifted is predicted to occur; (2) that in the presence of highly nonthermal lattice excitation, possible anomalously large energy transfer with the lattice is predicted.  相似文献   

16.
We consider a cantilever mechanical oscillator (MO) made of diamond. A nitrogen-vacancy (NV) center lies at the end of the cantilever. Two magnetic tips near the NV center induce a strong second-order magnetic field gradient. Under coherent driving of the MO, we find that the coupling between the MO and the NV center is greatly enhanced. We studied how to generate entanglement between the MO and the NV center and realize quantum state transfer between them. We also propose a scheme to generate two-mode squeezing between different MO modes by coupling them to the same NV center. The decoherence and dissipation effects for both the MO and the NV center are numerically calculated using the present parameter values of the experimental configuration. We have achieved high fidelity for entanglement generation, quantum state transfer, and large two-mode squeezing.  相似文献   

17.
We use a bichromatic optical lattice to experimentally realize a disordered system of ultracold strongly interacting 87Rb bosons. In the absence of disorder, the atoms are pinned by repulsive interactions in the sites of an ideal optical crystal, forming one-dimensional Mott-insulator states. We measure the excitation spectrum of the system as a function of disorder strength and characterize its phase-coherence properties with a time-of-flight technique. Increasing disorder, we observe a broadening of the Mott-insulator resonances and the transition to a state with vanishing long-range phase coherence and a flat density of excitations, which suggest the formation of a Bose-glass phase.  相似文献   

18.
Molecular Dynamics (MD) is employed to investigate nonthermal melting triggered by coherent phonon excitation in bismuth telluride, which has Peierls distortion in the lattice structure. Results showed that the structural distortion caused by coherent phonons appears as early as 80 fs, while it takes several picoseconds for the whole phonon-excited area to evolve into a liquid state. It was also found that the temperature in the phonon-excited area rises quickly within tens of femtoseconds, while the rest of the lattice remains at the initial temperature even after several picoseconds, which is separated from the high temperature region across a thin transition area. This phenomenon is analogous to the heat transfer across a solid–liquid interface, even though in our case there is no abrupt solid-liquid interface between the cold lattice and the quasiliquid.  相似文献   

19.
We review some of the techniques that lead to the effective medium representation of a three-dimensional (3D) periodic metamaterial. We consider a 3D lattice of lead telluride cubic resonators at mid-infrared (MIR) frequencies. Each cubic resonator is modeled with both an electric and a magnetic dipole, through a method called the dual dipole approximation. The electric and magnetic polarizabilities of a cubic resonator are computed via full-wave simulations by mapping the resonator's scattered field under electric/magnetic excitation only to the field radiated by an equivalent electric/magnetic dipole. We then analyze the allowed modes in the lattice, with transverse polarization and complex wavenumber, highlighting the attenuation that each mode experiences after one free space wavelength. We observe the presence of two modes with low attenuation constant, dominant in different frequency ranges, able to propagate inside the lattice: this allows the treatment of the metamaterial as a homogeneous material with effective parameters, evaluated by using various techniques. We then show that the metamaterial under analysis allows for the generation of artificial magnetism (i.e., relative effective permeability different than unity, including negative permeability with low losses) at MIR frequencies.  相似文献   

20.
We present the experimental generation of large effective magnetic fields for ultracold atoms using photon-assisted tunneling in an optical superlattice. The underlying method does not rely on the internal structure of the atoms and, therefore, constitutes a general approach to realize widely tunable artificial gauge fields without the drawbacks of near-resonant optical potentials. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov–Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of one flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for non-interacting particles. We provide a local measurement of the phase acquired by single particles due to photon-assisted tunneling. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the effective magnetic field is directly revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号