首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
利用针-板式介质阻挡放电电极结构,直接在水中产生了空气等离子体,并对其进行了电气参量和等离子体参量诊断.实验结果表明:位移电流在总电流中占据的比重非常小,有效功率、气体温度、电子密度随峰值电压的增大几乎线性地增大.当峰值电压从12kV增大到15kV时,有效功率最大值约30W,气体温度从728K增大到了843K,电子密度从5.05×10~(14) cm~(-3)增大到9.33×10~(14) cm~(-3).另外,空气等离子体中存在H_α~*,H_β~*,O~*,OH~*,N_2~*以及N_2~+等多种活性粒子.  相似文献   

2.
为了加快低温氦气等离子体射流的工程化进程,通过自主设计的同轴式介质阻挡放电等离子体射流发生器,在放电频率10 kHz,一个大气压条件下产生了稳定的氦气等离子体射流。通过分析不同工况下的电压电流波形可以发现单纯增加氦气体积流量只能小幅的增加电流脉冲幅值,而对放电时间、电流脉冲数的影响不大。增加放电峰值电压时电流脉冲幅值会得到较大幅度增加。通过发射光谱法对大气压氦气等离子射流的活性粒子种类、电子激发温度、电子密度进行了诊断。结果表明,大气压氦气等离子体射流中的主要活性粒子为He Ⅰ原子、N2第二正带系、N+2的第一负带系、羟基(OH),H原子的巴尔末线系(Hα和Hβ)与O原子,这表明虽然该试验中使用的氦气纯度已达99.99%,但其中仍残留有少量的空气,同时放电时大气中的空气会被卷吸到放电空间发生电离。还可以发现,主要活性粒子的相对光谱强度随氦气体积流量的增加及放电峰值电压的增大均呈现上涨的趋势。选用He Ⅰ原子的四条谱线对不同试验工况下的电子激发温度进行了计算,得到大气压氦气等离子体射流的电子激发温度在3 500~6 300 K之间,电子激发温度随放电峰值电压与氦气体积流量的增大总体上呈现上升的趋势。但由于反向电场的存在,某些峰值电压可能会出现电子激发温度下降的情况;根据Stark展宽原理对大气压氦气等离子体射流的电子密度进行了计算,发现电子密度的数量级可达1015 cm-3,同时增大峰值电压与氦气体积流量均可有效的提高射流中的电子密度。这些参数的研究对氦气等离子体射流在工程实际中的应用具有重要意义。  相似文献   

3.
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV(间隔1.0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109 cm-3,电离度偏弱。这些参数的探索对等离子体研讨有重大意义。  相似文献   

4.
介绍一种结构设计简单、操作运行方便的新型毫米量级大气压冷等离子体射流发生技术.这种射流可以在大气压条件下,利用多种工作气体(如Ar,He,N2),通过毛细管介质阻挡放电(DBD)的方式实现.使用频率为33kHz,峰值电压为1—12kV的双向脉冲电源,利用Ar,He,N2等工作气体,在毛细管内形成了稳定的冷等离子体射流.放电区域的光辐射空间分布利用商用CCD摄像机记录,从中研究放电形态和空间分布,观察到了在DBD区域的流动气体放电和在毛细管出口处形成的等离子体射流 关键词: 冷等离子体射流 毛细管介质阻挡放电 射流射程 射流激发温度  相似文献   

5.
为了更加深入地了解氩气/空气等离子体射流内的电子输运过程及化学反应过程,通过针-环式介质阻挡等离子体发生器在放电频率10 kHz,一个大气压条件下对氩气/空气混合气进行电离并产生了稳定的等离子体射流。通过发射光谱法对不同峰值电压下氩气/空气等离子体射流的活性粒子种类、电子激发温度及振动温度进行了诊断。结果表明,射流中的主要活性粒子为N2的第二正带系、Ar Ⅰ原子以及少量的氧原子,其中N2的第二正带系的相对光谱强度最强、最清晰,在本试验的发射光谱中没有发现N+2的第一负带系谱线,这说明在氩气/空气等离子体射流中几乎没有电子能量高于18.76 eV的自由电子。利用Ar Ⅰ原子激发能差较大的5条谱线做最小二乘线性拟合对等离子体射流的电子激发温度进行了计算,得到大气压氩气/空气等离子体射流的电子激发温度在7 000~11 000 K之间。随峰值电压的增大,电子激发温度表现出先增大后减小的变化趋势,这说明电子激发温度并不总是随峰值电压的增长单调变化的。通过N2的第二正带系对等离子体振动温度进行了诊断,发现大气压氩气/空气等离子体射流振动温度在3 000~4 500 K之间,其随峰值电压的增大而减小,这意味着虽然峰值电压的提高可有效提高自由电子的动能,但当电子动能较大时自由电子与氮分子之间的相互作用时间将会缩短,进而二者之间的碰撞能量转移截面将会减小,从而导致等离子体振动温度的降低。  相似文献   

6.
刘源  方志  杨静茹 《强激光与粒子束》2013,25(10):2592-2598
为了研究水蒸气体积分数对大气压等离子体射流放电机理及放电效率的影响,进而产生高活性低温等离子体并优化其效率。通过对大气压氩水等离子体射流的电压电流波形和Lissajous图形等电气特性的测量及发射光谱和发光图像等光学特性诊断,研究了不同水蒸气体积分数时,等离子体射流的放电特性。通过计算放电功率、传输电荷量、电子激发温度、分子振动温度和分子转动温度等主要放电参量,研究了它们随水蒸气体积分数的变化趋势,并结合放电机理对所得实验结果进行分析。结果表明,Ar/H2O等离子体射流除了产生N2和Ar,还有OH和O,气体温度在525~720 K之间变化,为典型的低温等离子体;随着水蒸气体积分数的增加,等离子体羽喷出管口的长度减小,放电功率减小,发光强度减弱,转动温度和振动温度增加;相同功率下,水蒸气体积分数为0.5%时,产生的OH达到最大。  相似文献   

7.
雷枭  方志  邵涛  章程 《强激光与粒子束》2012,24(05):1206-1210
采用自行研制的低造价、小体积、可产生幅值0~35 kV、重复频率1 kHz的高压s脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究。结果表明:s脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;s脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流。  相似文献   

8.
大气压氖气介质阻挡放电脉冲等离子射流特性   总被引:3,自引:3,他引:0       下载免费PDF全文
雷枭  方志  邵涛  章程 《强激光与粒子束》2012,24(5):1206-1210
采用自行研制的低造价、小体积、可产生幅值0~35 kV、重复频率1 kHz的高压s脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究。结果表明:s脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;s脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流。  相似文献   

9.
由于具有工作气压高、放电均匀等特点,大气压介质阻挡放电成为近年来非平衡等离子体领域研究的主要技术。电极结构是电离特性的主要影响因素之一,因此,通过电极结构优化来改善电离特性,对等离子体放电设备的应用领域拓展及性能优化至关重要。为改善大气压介质阻挡放电的电离特性,产生高活性、高均匀性的低温等离子体,基于自主设计的同轴介质阻挡放电装置进行了不同电极结构的电离试验及参数诊断;在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV条件下进行了氩气电离试验;采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;研究了螺纹电极、齿状电极、圆柱电极放电的特征光谱参数及外施电压对介质阻挡放电特征参数的影响。结果表明,齿状电极放电所形成等离子体的放电强度更大且放电效果显著,电子平均能量利用率低,电子激励温度弱于圆柱电极;圆柱电极放电强度较弱,但易形成大面积均匀性等离子体;大气压环境下电子激励温度不因外源电压的升高而单调递加,这表明通道内微放电的主要特征并不依赖于外施电压的供给,而是取决于电极结构、气体组份、气体压强;增大外施电压仅能增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K,符合典型的低温等离子体特征。  相似文献   

10.
等离子体喷枪是一种重要的等离子体源,已成为近几年低温等离子体研究的一个重要课题。本文利用钨针-钨丝网电极制作了直流喷枪装置,在大气压空气中产生了稳定的等离子体羽,并采用发射光谱的方法,对等离子体羽的等离子体参数进行了研究。在钨针电极与钨丝网电极之间放出耀眼的白光,钨丝网电极出口的气流下游有火苗形状的等离子体羽喷出。在电压保持不变的条件下(13.5 kV),等离子体羽长度随气体流量增加而增大;在气体流量保持不变的条件下(10 L·min-1),羽长度随外加电压的增大而增大。在气体流量一定的条件下,放电电压和放电电流呈反比例关系,即电压随着电流的增大而减小,说明放电属于辉光放电。采集了该喷枪在300~800 nm范围内的放电发射光谱,通过玻尔兹曼方法对放电等离子体电子激发温度进行了测量。结果表明,电子的激发温度随外加电压的增大而降低,随着工作气体流量的减小而升高。利用放电的基本理论对上述现象做了解释。这些研究结果对大气压均匀放电等离子体源的研制和工业应用具有重要意义。  相似文献   

11.
远程等离子体可以有效避免电子与离子碰撞产生的刻蚀作用,加强自由基反应,取得更好的改性效果,在膜材料领域具有重要的应用价值。为了更加深入研究远程等离子体中电子状态及其变化规律,采用发射光谱法对远程Ar等离子体进行了诊断,研究了射频功率、反应腔室内压强、距放电中心距离对远程Ar等离子体发射光谱强度、电子密度和电子温度的影响。结果表明,在690~890 nm区域中特征峰较为集中,由ArⅠ原子谱线占主导,且谱线强度的变化规律和电子密度的变化规律相同。通过玻尔兹曼斜率法选取3条ArⅠ谱线计算了不同放电参数下的电子温度。电子温度随射频功率、反应腔室内压强、距放电中心距离的改变而改变。射频功率从30 W增加到150 W时,电子温度从3 105.39 K降低至2 552.91 K。压强从15 Pa增加到25 Pa时,电子温度从3 066.53 K降低到2 593.32 K,当压强继续增加到35 Pa时,电子温度则增加至2 661.71 K。在距放电中心0~10 cm处由于等离子体电位增大,电子温度上升,而10 cm后电子温度不断下降在距放电中心80 cm处趋于0 K。通过分析ArⅠ696.894谱线的...  相似文献   

12.
利用发射光谱法测量大气压He-Ar混合气体射频容性放电中的Ar亚稳态1s5(3s23p54s[3/2]2)粒子数密度。在不同的放电功率和气体组分下测量放电等离子体中的重要参数:气体转动温度、电子激发温度和Ar亚稳态1s5粒子数密度。结果表明:气体温度在不同放电功率及Ar气压在5103 Pa以内时变化不大,范围为300~350 K;电子激发温度随着放电功率的增加而增加,并且在Ar气压为4103 Pa时最大,在放电功率为70 W时达到0.58 eV;1s5粒子数密度随着放电功率以及电子激发温度的增加而增加,在放电功率为70 W、Ar气压为4103 Pa时达到1.53109 cm-3。  相似文献   

13.
利用发射光谱法测量大气压He-Ar混合气体射频容性放电中的Ar亚稳态1s5(3s23p54s[3/2]2)粒子数密度。在不同的放电功率和气体组分下测量放电等离子体中的重要参数:气体转动温度、电子激发温度和Ar亚稳态1s5粒子数密度。结果表明:气体温度在不同放电功率及Ar气压在5103 Pa以内时变化不大,范围为300~350 K;电子激发温度随着放电功率的增加而增加,并且在Ar气压为4103 Pa时最大,在放电功率为70 W时达到0.58 eV;1s5粒子数密度随着放电功率以及电子激发温度的增加而增加,在放电功率为70 W、Ar气压为4103 Pa时达到1.53109 cm-3。  相似文献   

14.
大气压直流微等离子体射流研究   总被引:3,自引:0,他引:3  
介绍了一种结构简单、 制作方便的微米量级大气压等离子体射流。这种微等离子体射流由直流电源驱动,可在多种工作气体(如Ar,He,N2等)中实现大气压放电,产生高电流密度的辉光放电。为了确定微等离子射流产生的激发物种成分,测量了以Ar和N2为工作气体的等离子体发射光谱。利用发射光谱相对强度比值法测量了氩气微等离子体射流的电子激发温度。实验显示,其电子激发温度约为3 000 K,这远低于大气压等离子体炬的电子激发温度。利用N2的二正带发射光谱得到微等离子体的振动温度约为2 500 K;利用其电学参数估算电子密度在1013cm-3量级。利用此微等离子体射流进行了普通打印纸表面处理的应用实验。结果显示,这种微等离子体射流能够明显的提高普通打印纸的亲水性。  相似文献   

15.
庞佳鑫  何湘  陈秉岩  刘冲  朱寒 《强激光与粒子束》2019,31(3):032002-1-032002-8
针对中等气压、中等功率下射频容性耦合(CCRF)等离子体的放电特性,采用基于流体模型的COMSOL软件仿真,建立一维等离子体放电模型,以Ar为工作气体,研究同一气压时不同射频输入功率下等离子体电子温度和电子密度的分布规律。同时依据仿真模型设计制作相同尺寸的密闭玻璃腔体和平板电极,实验测量了不同射频输入功率时放电等离子体的有效电流电压及发射光谱,进而计算等离子体的电子温度及电子密度;利用玻耳兹曼双线测温法,得到光谱法下等离子体的电子温度及电子密度。结果表明:当气体压强为250 Pa、输入功率为100~450 W时,等离子体电压电流呈线性关系,电子密度随功率的增大而增大,而电子温度并未随功率的变化而有明显变化,其与功率无关。运用仿真模拟验证了实验的准确性,通过比较,三种方法所得的结果相近。通过结合等效回路法、光谱法和数值模拟仿真法初步诊断出中等气压下等离子体的放电参数,提出了结合三种方法作为实验研究的方法,使实验结果更具说服力,证明其方法的可靠性,也为进一步的等离子体特性研究提供依据。  相似文献   

16.
本文针对恶劣条件下滑动弧等离子体放电稳定性问题,搭建了高气压交流旋转滑动弧放电实验系统,开展了高气压下交流旋转滑动弧放电特性实验,并对其放电特性、电弧运动特性、光谱特性进行了分析.研究结果表明:随着介质气体压力的升高,滑动弧放电的电压、电流、能量均呈现增大趋势,当介质气体压力升高到0.52 MPa时,滑动弧放电的能量从常压下的84.74 J增大到147.13 J;且随着介质气体压力的升高,电弧的击穿频率并不是单调变化,而是在0.2 MPa时达到最大为26.55 kHz;高气压下电弧运动过程中会出现“弧道骤变”现象;随着介质气体压力的升高,滑动弧放电的整体光谱发射强度呈现变强趋势;通过两谱线法对滑动弧放电的电子激发温度进行了计算,常压下滑动弧放电的电子激发温度为0.8153 eV,随着介质气体压力的升高,电子激发温度呈现升高趋势,当介质气体压力达到0.4 MPa时,滑动弧放电的电子激发温度升高至5.3165 eV.  相似文献   

17.
氮直流辉光放电活性粒子(N^+,N)的产生率   总被引:1,自引:1,他引:0  
在氮直流辉光放电等离子体中采用快电子和离子(N2^ ,N^ )混合的蒙特卡罗模型,模拟研究了e N2→N^ /N N 2和N2^ N2→N^ N N2过程中粒子(N^ ,N)产生率的轴向分布随放电参数(工作气压、放电电压和温度)的变化规律。结果表明:两种离解过程中氮活性粒子(N^ ,N)的产生率都随气压和电压的增加而增大,随放电气体温度的升高而降低;但N2^ —H2离解碰撞主要发生在阴极附近。电压较高时,阴极处的离子N^ 主要由N2^ —N2离解过程产生;电压较低时,N2^ —N2离解过程可忽略。中性原子N主要由电子碰撞离解过程产生。  相似文献   

18.
为了更加深入的研究大气压条件下Ar/CH4等离子体射流的放电机理和其内部电子的状态,通过自主设计的针-环式介质阻挡放电结构,在放电频率10 kHz、一个大气压条件下产生了稳定的Ar/CH4等离子体射流,并利用发射光谱法对其进行了诊断研究。对大气条件下Ar/CH4等离子体射流的放电现象及内部活性粒子种类进行诊断分析,重点研究了不同氩气甲烷体积流量比、不同峰值电压对大气压Ar/CH4等离子体射流电子激发温度、电子密度以及CH基团活性粒子浓度的影响规律。结果表明,大气压条件下Ar/CH4等离子体射流呈淡蓝色,在射流边缘可观察到丝状毛刺并伴有刺耳的电离声同时发现射流尖端的形态波动较大;通过发射光谱可以发现Ar/CH4等离子体射流中的主要活性粒子为CH基团,C,CⅡ,CⅢ,CⅣ,ArⅠ和ArⅡ,其中含碳粒子的谱线主要集中在400~600 nm之间,ArⅠ和ArⅡ的谱线分布在680~800 nm之间;可以发现CH基团的浓度随峰值电压的增大而增大,但CH基团浓度随Ar/CH4体积流量比的增大而减小,同时Ar/CH4等离子体射流中C原子的浓度随之增加,这表明氩气甲烷体积流量比的增大加速了Ar/CH4等离子体射流中C-H的断裂,因此可以发现增大峰值电压与氩气甲烷体积流量比均可明显的加快甲烷分子的脱氢效率,但增大氩气甲烷体积流量比的脱氢效果更加明显。通过多谱线斜率法选取4条ArⅠ谱线计算了不同工况下的电子激发温度,求得大气压Ar/CH4等离子体射流的电子激发温度在6 000~12 000 K之间,且随峰值电压与氩气甲烷体积流量比的增大均呈现上升的趋势;依据Stark展宽机理对Ar/CH4等离子体射流的电子密度进行了计算,电子密度的数量级可达1017 cm-3,且增大峰值电压与氩气甲烷体积流量比均可有效的提高射流中的电子密度。这些参数的探索对大气压等离子体射流的研讨具有重大意义。  相似文献   

19.
通过介质阻挡放电产生的等离子体可与燃料中的烃类分子发生碰撞裂解反应,将燃料分子裂解生成更容易起爆的氢气和小分子烃类,能有效改善液体燃料连续旋转爆震发动机的起爆性能。该研究在真空仓中开展体积介质阻挡放电的丝状放电光谱测试,分析了大气压氩气环境下体积介质阻挡放电的电子激发温度和电子密度随加载电压的变化规律。丝状放电的电子激发温度通过波尔兹曼斜率法计算,电子密度采用斯塔克展宽法计算。发现发射谱线均由氩原子4p-4s能级跃迁产生;各谱线强度随加载电压的提高均呈上升趋势,且与电压基本呈线性关系;对于大气压丝状放电,加载电压对电子激发温度和电子密度没有明显影响作用,加载电压12.5~14.5 kV范围内,电子激发温度稳定在3 400 K附近,电子密度在1025 m-3量级。  相似文献   

20.
·OH在众多领域中具有非常重要的作用,在国际上引起了广泛关注,而大气压等离子体射流由于不需要真空、装置简单易于携带,且具有高浓度活性粒子、高电子温度、低射流温度等优点,具有极强的应用前景,成为气体放电领域的重要研究课题。特别是如何诱导等离子体射流中·OH的产生已成为等离子体射流领域一个新的研究热点。国外率先报道了将水蒸汽以一定的比例混入等离子体射流工作气体中以诱导产生大量·OH的研究,然而当含水量较高时,射流会剧烈摆动,放电变得十分不均匀、不稳定。为此,本文设计了一种大气压双环电极氩气等离子体射流诱导水产生·OH的装置,通过引入超声雾化装置增加等离子体羽周围的湿度以提高·OH含量,重点研究了不同电压、流量下诱导水生成OH(A2Σ+)的生成规律;利用发射光谱法测试了装置产生·OH的含量;并利用810.41和811.48 nm这两条Ar原子光谱线,计算了等离子体羽中的电子温度。结果表明等离子体羽可以诱导周围的水产生·OH,且随电压从20 kV增大到28 kV时,OH(A2Σ+)的产量逐渐增大;而当氩气流量从100 L·h-1增大到200 L·h-1时,·OH产量随着流量的增大而增大,但是当氩气流量从200 L·h-1增大到600 L·h-1时,·OH产量随着流量的增大而不断减小。OH(A2Σ+)的产量和电子温度变化趋势完全一致,证明了·OH的产量主要受电子温度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号