首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李振武 《物理学报》2012,61(1):16103-016103
基于CdS良好的光学性质和单壁碳纳米管(SWCNT)优异的电子学性质, 制备了纳米CdS/SWCNT复合材料和纳米CdS/聚乙烯亚胺(PEI)功能化SWCNT复合材料, 并利用日光灯光源模拟太阳光研究了它们的光电性质. 结果表明, 纳米CdS/SWCNT复合材料呈现显著的负光电导现象, 而纳米CdS/PEI-SWCNT复合材料呈现强烈的正光电导现象. 用电子转移理论对这一结果进行了解释. 两样品在大角度弯折的情况下, 光电性质均基本没有变化. 因此, 纳米CdS/碳纳米管复合材料在光电领域, 尤其是新兴的柔性光电子学领域有着良好的应用前景. 关键词: 碳纳米管 CdS 光电材料 复合材料  相似文献   

2.
《Composite Interfaces》2013,20(2-3):311-319
The transverse tensile properties of phenolic composites reinforced with spun-type carbon fabrics (spun C/P composites) have been investigated in order to evaluate the adherent failure behavior of composites in the transverse (90°) direction due to tension. The transverse tensile strength of the spun C/P composite is about 3.4 times higher than that of the conventional composite reinforced with filament type carbon fabrics (filament C/P composites). It is found from stress–strain curve of composites that it exhibits above 4 times higher failure strain than the filament C/P composite. However, the transverse tensile modulus of the spun C/P composite is similar to that of the filament C/P composite. The results indicate that the protruded fibers of spun yarns between the interlaminar layers in the spun C/P composite play an important role in improving the transverse tensile properties by the effects of fiber bridging. Consequently, this result suggests that use of spun yarn type carbon fabrics as reinforcement in a phenolic composite may significantly contribute to improving the interfacial properties of carbon/phenolic composites.  相似文献   

3.
安萍  郭浩  陈萌  赵苗苗  杨江涛  刘俊  薛晨阳  唐军 《物理学报》2014,63(23):237306-237306
针对传感器的敏感单元发展需求,提出了一种碳纳米管复合材料.该材料是以碳纳米管作为填充粒子,结合聚二甲基硅氧烷(PDMS)有机基体,采用超声共混方法制备的一种新型传感器敏感元件.详细分析研究了复合材料的制备工艺参数,以及在不同工艺参数下该复合材料的力敏特性.扫描电镜测试表明碳纳米管在PDMS中分散均匀且镶嵌良好.通过对不同体积分数的碳纳米管与PDMS复合材料进行电学性能测试,研究薄膜的"力-电阻"和"力-电容"耦合性能,测试了薄膜结构的力敏效应.计算得到复合薄膜材料的压阻灵敏度因子达到40,压电容灵敏度因子达到70.实验研究表明,通过改变碳纳米管与PDMS的比例,可以很好地调节其电子输运特性以及电阻和电容的应力敏感特性,可以为该类型的力敏材料在不同的力敏传感技术领域提供新的研究思路.  相似文献   

4.
Polypyrrole/carbon nanotube nanoscale composites were successfully fabricated by electrochemical deposition of polypyrrole over each of the carbon nanotubes in well-aligned large arrays. The thickness of the polypyrrole coating can be easily controlled by the value of the film-formation charge. For both thin (low film-formation charge) and thick (high film-formation charge) films, the polypyrrole coating on the surface of each nanotube is very uniform throughout the entire length, as observed by transmission electron microscopy. Received: 2 May 2001 / Accepted: 4 May 2001 / Published online: 20 June 2001  相似文献   

5.
曾晖  胡慧芳  韦建卫  谢芳  彭平 《物理学报》2006,55(9):4822-4827
运用第一性原理的密度泛函理论结合非平衡格林函数研究了含有五边形—七边形拓扑缺陷的纳米碳管异质结的输运性质.结果发现:拓扑缺陷对碳管的输运性质有很大影响;另外,不同类型的碳管形成的异质结的输运性质也有明显的差异. 关键词: 纳米碳管 输运性质 异质结 透射系数  相似文献   

6.
《Composite Interfaces》2013,20(4-5):389-404
—Composites of polycarbonate (PC) with multi-wall carbon nanotubes (MWNT) of different concentrations are prepared by diluting a PC based masterbatch containing 15 wt% MWNT using melt mixing in a DACA-Micro Compounder (4 g scale). Electrical resistivity measurements indicate that the percolation of MWNT is reached between 1 and 1.5 wt%. In addition, melt rheology was applied as another sensitive method to detect the percolation of the nanotubes. Atomic Force Microscopy and visual observations of the composite dispersions in a PC-solvent were used to characterise the state of MWNT dispersion. Differential Scanning Calorimetry and Dynamic Mechanical Analysis were applied to detect changes in the glass transition temperature of PC as a result of processing and of MWNT interactions with the PC matrix including the state of dispersion. In addition, DMA confirmed the reinforcement effect of the nanotubes. The results show that the nanotube incorporation also influences the processing behaviour. Due to the enhancement in melt viscosity by adding nanotubes and the enhanced shear forces, the molecular weight of the PC in the composites is reduced as compared to PC extruded under the same conditions. This effect leads to changes in the glass transition temperature and modulus which counteracts the effects originating from the nanotube-polymer interaction.  相似文献   

7.
刘红霞  张鹤鸣  宋久旭  张志勇 《中国物理 B》2010,19(3):37104-037104
The structure of a heterojunction made up of an (8, 0) carbon nanotube and an (8, 0) boron nitride nanotube is achieved through geometry optimization implemented in the CASTEP package. Based on the optimized geometry, the model of the heterojunction is established. Its transport properties are investigated by combining the nonequilibrium Green's function with density functional theory. Results show that both the lowest unoccupied molecular orbital and the highest occupied molecular orbital mainly locate on the carbon nanotube section. In the current--voltage characteristic of the heterojunction, a rectification feature is revealed.  相似文献   

8.
New composite polymer electrolytes (CPE) have been prepared by a solution-casting technique, using polyethylene oxide, lithium hexafluorate (LiPF6) as the doping salt, ethylene carbonate (EC) as the plasticizer and amorphous carbon nanotubes (αCNTs) as the filler. The crystallinity and ionic conductivity of the CPE are examined. Differential scanning calorimetry shows a decrease in melting temperature and crystallinity upon the addition of LiPF6, EC and αCNTs to the polymer electrolyte system. The addition of salt increases the conductivity up to 10−5 S cm−1. The incorporation of EC and αCNTs into the salted polymer shows a significant conductivity increase of 10−4 and 10−3 S cm−1. The complexation process is examined using Fourier transform infrared spectroscopy. The Vogel-Tamman-Fulcher (VTF) plots suggest that the temperature dependence of conductivity is a thermally activated process.  相似文献   

9.
10.
Synchrotron radiation diffraction data were collected from hydroxyapatite–carbon nanotube bioceramic composites to determine the crystallite size and to measure changes in non‐uniform strain. Estimates of crystallite size and strain were determined by line‐profile fitting of discrete peaks and these were compared with a Rietveld whole‐pattern analysis. Overall the two analysis methods produced very similar numbers. In the commercial hydroxyapatite material, one reflection in particular, (0 2 3), has higher crystallite size and lower strain values in comparison with laboratory‐synthesized material. This could indicate preferential crystal growth in the [0 2 3] direction in the commercial material. From the measured strains in the pure material and the composite, there was a degree of bonding between the matrix and strengthening fibres. However, increasing the amount of carbon nanotubes in the composite has increased the strain in the material, which is undesirable for biomedical implant applications.  相似文献   

11.
Polyacrylonitrile (PAN)-based carbon fabric (CF) was modified with strong HNO3 oxidation and then introduced into polyimide (PI) composites. The friction and wear properties of the carbon fabric reinforced polyimide composites (CFRP), sliding against GCr15 stainless steel rings, were investigated on an M-2000 model ring-on-block test rig under dry sliding. Experimental results revealed that the carbon fiber surface treatment largely reduced the friction and wear of the CFRP. Compared with the untreated ones, the surface-modified CF can enhance the tribological properties of CFRP efficiently due to the improved adhesion between the CF and the PI matrix. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after surface treatment, which improved the adhesion between the fiber and the PI matrix and improved the friction-reduction and anti-wear properties of the CFRP. An erratum to this article can be found at  相似文献   

12.
Electronic structure at carbon nanotube tips   总被引:3,自引:0,他引:3  
Received: 27 November 1998 / Accepted: 5 January 1999  相似文献   

13.
Electromagnetic wave absorbing properties of absorbing composites depend on the dielectric and magnetic loss generally. In this paper, using Fe3O4-coated amorphous carbon nanotubes (ACNTs-Fe3O4) fabricated using a chemical synthesis–hydrothermal treatment method as an absorber and polyvinyl chloride (PVC) as a matrix, electromagnetic and mechanical properties of ACNT-Fe3O4/PVC composite were investigated. The results showed that the dielectric and magnetic losses of ACNT-Fe3O4/PVC composite were significantly enhanced in 8.2–12.4 GHz compared to ACNT/PVC composite, which improved absorbing properties, while slightly changing the mechanical properties.  相似文献   

14.
采用溶胶-喷雾制备了多壁碳纳米管增强氧化铝基球形复合粉体,采用放电等离子真空快速烧结成型.SEM分析测试结果表明,多壁碳纳米管在氧化铝基体中呈网络分布,且主要位于晶界处,少量呈穿晶分布.复合材料性能分析测试结果表明,当多壁碳纳米管的质量分数为0.5%时,复合材料的维氏硬度相对纯的氧化铝提高了32.6%;热扩散系数在不同测试温度下相对纯氧化铝的平均提高幅度为27.2%.此外,当多壁碳纳米管质量分数达到0.5%时复合材料呈导体,根据渗流导电理论拟合得到实验制备复合材料的渗流阈值为0.32 wt.%,说明多壁碳纳米管在氧化铝基体中分散良好.  相似文献   

15.
Qi Wang 《中国物理 B》2022,31(12):128801-128801
Nowadays, soft robots have become a research hot spot due to high degree of freedom, adaptability to the environment and safer interaction with humans. The carbon nanotube (CNT)/polydimethylsiloxane (PDMS) electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages. Here, the preparation process of CNT/PDMS composites was designed and optimized, and electrothermal actuators (ETAs) were fabricated by cutting the CNT/PDMS composite films into a "U" shape and coating conductive adhesive. The deformation performance of the ETAs with different thicknesses at different voltages was studied. At a low voltage of about 7 V, the ETA has a deformation rate of up to 93%. Finally, two kinds of electrothermal soft robots (ETSRs) with four-legged and three-legged structures were fabricated, and their inchworm-like motion characteristics were studied. The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.  相似文献   

16.
Large-scale and very even multi-wall carbon nanotube (MWNT) films have been obtained at room temperature by an electrophoresis deposition technique. The characterization, by means of scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and micro-Raman spectroscopy, shows that the MWNTs with hydrogen-plasma (HP) treatment are covered by onion-like nanolumps, and three-dimensional multiple-way-connected nanotube webs are formed. The electronic property of the treated MWNT film is converted from semiconducting to metallic. The field-emission test indicates that the HP-treated MWNT film has a low threshold of 1.1 V/m (at 0.1 A/cm2), a high emission light spot density of about 105 cm-2, and a stable and suitable emission current. The conversion mechanism of the treated carbon nanotube structure and the reason for the change of the electronic and field-emission characteristics of the MWNT films are discussed. PACS 81.07.De; 82.33.Xj; 85.45.Db  相似文献   

17.
Hybrid nanostructures composed of gold nanoparticles (NPs) and carbon nanotubes (CNTs) have been prepared by a microwave-assisted method in the mixed solvents of oleylamine and oleic. The morphology, structure and composition of as-obtained Au/CNT composites are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD). The composites show characteristic plasmon absorption of Au NPs in the Ultraviolet–visual spectrum. Fourier transform infrared spectrum shows the successful introduction of functional groups on the surface of CNTs, which are crucial factors to assist the nucleation in situ of Au NPs on the surface of CNTs. Electrochemical measurements show the enhancement electrochemical response for the gold electrode modified with Au/CNT composites.  相似文献   

18.
The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO3, and denudation of WC, WO3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.  相似文献   

19.
The third-order nonlinear optical properties of polyurethane-urea/multiwalled carbon nanotube composites (PU/MWNT) films with different MWNT concentrations are investigated by the use of the Z-scan technique at a wavelength of 532 nm with a pulse duration of 8 ns. The results reveal that the nonlinear refraction and absorption coefficients are linearly dependent on the MWNT concentration. The negative nonlinear refraction effect is validated from the closed-aperture Z-scan measurements. We find that PU/MWNT films are promising nonlinear optical materials, and the nonlinear coefficients can be controlled.  相似文献   

20.
Carbon monolayer nanotubes filled with K, Rb, and Cs atoms, in which every ten carbon atoms captures an electron from the doping atoms, are considered. It is assumed that a positive charge in the bulk of the nanotube and a negative charge on its surface are distributed uniformly so that the potential energy of a conduction electron inside the nanotube is proportional to the square of the distance to its center. The dependences of the Fermi quasi-momentum for conduction electrons inside the nanotube on their volume density and the tube radius are obtained in the one-electron approximation for an arbitrary number of subbands of transverse motion. The Landauer formula is used for calculating the dependence of the conductivity of the metallic subsystem of the nanotube on its radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号