共查询到20条相似文献,搜索用时 31 毫秒
1.
空穴注入层对蓝色有机电致发光器件性能的影响 总被引:1,自引:0,他引:1
以DPVBi为发光层,NPB为空穴传输层,在阳极ITO和NPB之间分别插入不同的空穴注入层CuPc和PEDOT:PSS,制备了两种结构的蓝色有机电致发光器件(OLEDs):ITO/CuPc/NPB/DPVBi/BCP/Alq3/Al和ITO/PEDOT:PSS/NPB/DPVBi/BCP/Alq3/Al,研究了不同空穴注入材料对蓝色OLEDs发光性能的影响,并与没有空穴注入层的器件进行了比较.其中CuPc分别采用旋涂和真空蒸镀两种丁艺,比较了不同成膜工艺对器件发光特性的影响.结果表明:加入空穴注入层的器件比没有空穴注入层器件性能要好,其中插入水溶性CuPc的器件,其发光亮度和效率虽然比蒸镀CuPc器件要低,但比插入PEDOT:PSS 器件发光性能要好.又由于水溶性CuPc采用旋涂工艺成膜,与传统CuPc相比,制备工艺简单,所以为一种不错的空穴注入材料. 相似文献
2.
Sang Eok Jang 《Journal of luminescence》2011,131(12):2788-2791
High efficiency single layer blue phosphorescent organic light-emitting diodes (PHOLEDs) without any charge transport layer were developed. A mixed host of spirobifluorene based phosphine oxide (SPPO13) and 1, 1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) was used as the host in the emitting layer. A high maximum external quantum efficiency of 15.8% and a quantum efficiency of 8.6% at 1000 cd/m2 were achieved in the single-layer blue PHOLEDs without any charge transport layer. The maximum power efficiency and power efficiency at 1000 cd/m2 were 31.4 and 16.9 lm/W, respectively. 相似文献
3.
Soon Ok Jeon 《Journal of luminescence》2011,131(8):1621-1624
High efficiency blue phosphorescent organic light-emitting diodes were fabricated without an electron transport layer using a spirobifluorene based blue triplet host material. The simple blue PHOLEDs without the electron transport layer showed a high external quantum efficiency and current efficiency of 16.1% and 30.2 cd/A, respectively. The high device performances of the electron transport layer free blue PHOLEDs were comparable to those of blue PHOLEDs with the electron transport layer. 相似文献
4.
Dong Hoe Chung Sung Woo Hur Sang Keol Kim Joon Ung Lee Chung Hyeok Kim Jin Woong Hong Tae Wan Kim 《Current Applied Physics》2004,4(6):667-670
We have studied temperature-dependent electrical properties of organic light-emitting diodes with a variation of cathode materials; Al, LiAl, and LiF/Al. The organic light-emitting diodes emit a light by a recombination of injected charge carriers such as holes and electrons. Thus, the charge transport is affected by the injection barrier at the interface. By varying the cathode materials, the electron injection at the interface could be controlled because of the work-function change at the cathode. Temperature-dependent current–voltage luminance characteristics of the organic light-emitting diodes were measured in the temperature range from 10 to 300 K. The current-voltage characteristics were analyzed in terms of Fowler–Nordheim tunneling model, and the energy-barrier height was obtained. A measured lifetime of device with LiF/Al cathode is relatively longer than the other cathodes at room temperature: 4.5 h for Al cathode, 12.4 h for LiAl, and 29.6 h for LiF/Al. The device with LiAl and LiF/Al cathode, in the aspect of lifetime and luminous efficiency, is superior to one of other cathodes. 相似文献
5.
《Current Applied Physics》2007,7(5):509-512
Temperature-dependent impedance characteristics of ITO/Alq3/Al organic light-emitting diodes were studied in the frequency range from 40 to 108 Hz, and the temperature was varied from 10 to 300 K. At each temperature, the frequency-dependent complex impedance was measured under discrete bias voltages from −6 to +20 V, and the voltage-dependent impedance was measured at 102 Hz, 103 Hz, 104 Hz, and 105 Hz. A Cole–Cole plot shows that there is one relaxation, and a parallel capacitor–resistor network in series with a contact resistance could be considered as an equivalent electrical circuit to this device. As the temperature decreases, a radius in the Cole–Cole plot increases, which indicates an increase of resistance of the device. 相似文献
6.
利用交流阻抗谱技术,研究了有机发光二极管ITO/Alq3(90 nm)/Al的载流子传导机理.根据器件对不同频率的响应曲线及其等效电路模型,该器件可看作是由并联的电阻Rp和电容Cp再与电阻Rs串联而成,并根据实验数据求出了Rp,Cp和Rs的数值.实验结果表明器件的载流子传输机理属于指数分布式的陷阱电荷限制电流,其介电弛豫时间随偏压的增加而逐渐减小.
关键词:
3')" href="#">Alq3
陷阱电荷限制电流
交流阻抗谱
有机发光二极管 相似文献
7.
Some specific designs on the electron blocking layer (EBL) of blue InGaN LEDs are investigated numerically in order to improve the hole injection efficiency without losing the blocking capability of electrons. Simulation results show that polarization-induced downward band bending is mitigated in these redesigned EBLs and, hence, the hole injection efficiency increases markedly. The optical performance and efficiency droop are also improved, especially under the situation of high current injection. 相似文献
8.
Color tunable microcavity organic light-emitting diodes (OLEDs) with structure of distributed Bragg reflectors (DBR)/indium-tin-oxide
(ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB)/tris(8-hydroxyquinoline) aluminum (Alq3)/LiF/Al were fabricated. Orange red and green light emissions with full width at half maximum (FWHM) of less than 20 nm were
obtained through simply changing the thickness of NPB layer. Furthermore, due to the effective modification of the spontaneous
emission within microcavity, the brightness and electroluminescent (EL) efficiency of the microcavity OLEDs were significantly
enhanced. The maximum brightness and current efficiency, respectively, reached 31000 cd/m2 at a current density of 480.0 mA/cm2 and 8.3 cd/A at a current density of 110.0 mA/cm2 for green devices, and 9700 cd/m2 at a current density of 180.0 mA/cm2 and 6.6 cd/A at a current density of 36.4 mA/cm2 for red devices, which are over 1.5 times higher than those of noncavity OLEDs.
相似文献
9.
实验中共制备了五种有机量子阱结构电致发光器件,分别对这五种量子阱结构器件的电致发光特性进行了研究,分析了量子阱结构的周期数和势垒层的厚度对器件电学性能的影响.实验结果表明适当周期数的量子阱结构器件的亮度和电流效率比传统的三层结构器件的要大,主要原因是量子阱结构对电子和空穴的限制作用,这种限制作用提高了电子和空穴在发光层中形成激子和复合的概率,从而提高了发光的亮度和效率.当改变阱结构器件中势阱层的厚度时,也会对器件的亮度和效率产生影响,采用适当的势阱层厚度能够提高器件的亮度和效率.
关键词:
量子阱结构
电致发光
电流效率
光谱 相似文献
10.
We fabricated simple and color-stable phosphorescent white organic light-emitting diodes (OLEDs) without an interlayer using a single host of 1,3-bis(9-carbazolyl)benzene with iridium(III) bis[(4,6-difluorophenyl) pyridinato-N,C2’]picolinate and bis(1-phenylisoquinoline)(acetylacetonate) iridium(III) as blue and red phosphorescent emitters, respectively. The CIE 1931 color coordinate difference of the white OLEDs is (0.008, 0.007) when the luminance of the device is increased from approximately 265 cd/m2 to 9156 cd/m2, which is regarded as visually indistinguishable in practice. In addition, we also measured the decay time of excitons to investigate the emission mechanism in this device using transient photoluminescence and electroluminescence techniques. 相似文献
11.
This study examined the electrical and optical properties of red OLEDs (organic light-emitting diodes) with a four-layer structure,
ITO/amorphous fluoropolymer (AF)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1-biphenyl-4,4′-diamine (TPD)/R-H:R-D/lithium fluoride (LiF)/Al, containing a hole injection material,
AF (amorphous fluoropolymer) and an electron injection layer material, LiF. Compared to the basic structure (two-layer structure),
the brightness and luminous efficiency of the four-layer structure, ITO/TPD/R-H:R-D/Al, increased approximately 100 times
(30,000 lm/m2) and 150 times (51 lm/W), respectively, with an applied voltage. The excellent efficiency of the external proton was also
increased 150 times (0.51%). That is, the hole and electron injection layers improved the surface roughness of ITO and Al,
and the interfacial physical properties. In addition, these layers allowed the smooth injection of holes and electrons. The
luminance, luminous efficiency and external quantum efficiency were attributed to an increase in the recombination rates. 相似文献
12.
金属卤化物钙钛矿材料由于具有高的光致发光量子产率、高色纯度、带隙可调等杰出的光学性能,被作为发光材料广泛地用于制备钙钛矿电致发光二极管(perovskite light-emitting diodes,PeLEDs).虽然取得了较好的研究进展,但是其效率和稳定性还未达到商业化的要求,还需要进一步提高.为了提高PeLEDs的效率和稳定性,本文使用旋涂法,引入了一种具有宽带隙和较好空穴传输能力的有机小分子材料4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline](TAPC)作为激子阻挡层,获得了效率和寿命都得到提高的全无机PeLEDs.研究表明,PeLEDs效率和寿命得到提高的物理机制主要源于两方面:1)TAPC具有恰当的最高占有分子轨道能级,与PEDOT:PSS的最高占有分子轨道能级和CsPbBr3的价带边形成了阶梯式能级分布,有利于空穴注入和传输;同时TAPC具有较高的最低未占分子轨道能级,能够有效地阻止电子泄漏到阳极端,并能很好地将电子和激子限制在发光层内;2)TAPC层的引入可以避免钙钛矿发光层与强酸性的空穴注入材料Poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate)(PEDOT:PSS)的直接接触,进而免除钙钛矿发光层由于与PEDOT:PSS的直接接触所导致的激子淬灭,从而提高了激子的发光辐射复合率. 相似文献
13.
High-efficiency organic light-emitting diodes based on ultrathin blue phosphorescent modification layer 下载免费PDF全文
Yellow organic light-emitting devices(YOLEDs) with a novel structure of ITO/MoO_3(5 nm)/NPB(40 nm)/TCTA(15 nm)/CBP:(tbt)_2Ir(acac)(x%)(25 nm)/FIrpic(y nm)/TPBi(35 nm)/Mg:Ag are fabricated. The ultrathin blue phosphorescent bis[(4,6-difluorophenyl)-pyridi-nato-N,C2■](picolinate) iridium(Ⅲ)(FIrpic) layer is regarded as a highperformance modification layer. By adjusting the thickness of FIrpic and the concentration of (tbt)_2Ir(acac), a YOLED achieves a high luminance of 41618 cd/m~2, power efficiency of 49.7 lm/W, current efficiency of 67.3 cd/A, external quantum efficiency(EQE) of 18%, and a low efficiency roll-off at high luminance. The results show that phosphorescent material of FIrpic plays a significant role in improving YOLED performance. The ultrathin FIrpic modification layer blocks excitons in EML. In the meantime, the high triplet energy of FIrpic(2.75 eV) alleviates the exciton energy transport from EML to FIrpic. 相似文献
14.
Solution-processed p-doped hole-transport layer and its application in organic light-emitting diodes
We investigate p-type doping poly(9-vinylcarbazole) (PVK) hole-transport layer (HTL) with tetrafluoro-tetracyano-quinodimethane introduced via cosolution. We found that the performances of devices with doped HTLs are significantly improved. The efficiency and lifetime of the p-doped device are 2.3 and 3.7 times as large as that of the control device with pure PVK as a HTL. Furthermore, the turn-on voltage of the device is reduced from 9.5 to 3.6 V by using a p-doped HTL. These improved properties are attributed to the formation of the charge-transfer complex in the HTL, which increases hole injection and conductivity of p-doped films considerably. 相似文献
15.
16.
A tandem organic light-emitting diode structure, excited electrically in the pulsed domain and confined within a double spatial filter configuration, is observed to emit a low-divergence beam (deltatheta approximately 2.53 mrad, or approximately 1.1 times the diffraction limit) with a near-Gaussian spatial distribution. The emission originates from the laser dye Coumarin 545 T, which is used as a dopant. Spectral coherence was determined by use of a double-slit interferometer. The interferometric distribution from our device approximates the interferometric pattern obtained from well-known lasers emitting at lambda approximately 540 nm. 相似文献
17.
We report on highly enhanced and controlled light outcoupling of bidirectional organic light-emitting diodes by introduction of an enhanced microcavity structure as well as an organic capping layer (OC). Combining both OC and microcavity, we find that the overall external quantum, as well as current efficiency (CE), can be greatly enhanced. Especially, the CE with an appropriate thickness of OC is almost 1.75 times larger than that of the reference device without OC. Furthermore, we also analyze our devices with a numerical optical model calculating the flux of outcoupled photons, and compare theoretical predictions with our experimental results. 相似文献
18.
顶发射白光有机发光二极管(TEWOLED)在白光照明和全彩显示中有着良好的应用前景, 克服顶发射器件中的微腔效应是制备光电性能良好的TEWOLED的前提. 使用具有高折射率的ZnS作为增透膜改善金属阴极在蓝光波段的透射率,降低其反射性, 从而有效抑制了微腔的影响.同时利用转移矩阵理论和宽角干涉方法分别对阴极结构和 蓝光发光层位置进行了优化,最终获得了高效、色纯度良好、色度随视角变化小的TEWOLED. 最高亮度和效率分别达到9213 cd/m2和3 cd/A,色坐标位于白光区且接近白光等能点, 同时具有良好的视角稳定性,在0°---60°范围内色坐标仅变化(0.02, 0). 相似文献
19.
This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m2 when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m2 is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied. 相似文献
20.
We used N,N′-bis-(1-naphthyl)-N,N′-1-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), 4,4′-N,N′-dicarbazole-biphenyl (CBP) and tris(8-hydroxyquinoline) aluminum (Alq3) to fabricate tri-layer electroluminescent (EL) device (device structure: ITO/NPB/CBP/Alq3/Al). In photoluminescence (PL) spectra of this device, the emission from NPB shifted to shorter wavelength accompanying with the decrease of its emission intensity and moreover the emission intensity of Alq3 increased relatively with the increase of reverse bias voltage. The blue-shifted emission and the decrease in emission intensity of NPB were attributed to the polarization and dissociation of NPB excitons under reverse bias voltage. The increase of emission intensity of Alq3 benefited from the recombination of electrons (produced by the dissociation of NPB exciton) and holes (injected from the Al cathode). 相似文献