首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembled monolayers (SAMs) of alkanethiols adsorbed onto clean surfaces of face centred cubic (fcc) metals have been studied extensively for their ability to control the chemical functionality of the surface and as a means of preventing the oxidation and corrosion of the substrate metal. However, in many cases it has been found that on reactive substrates such as copper, it is difficult to prepare SAMs without the incorporation of some oxygen into the structure. In this work, self-assembled monolayers of octadecanethiol (ODT) were formed on copper foil substrates using a series of etching treatments to remove the native oxide layer prior to deposition of the ODT coating from a modified solution. X-ray photoelectron spectroscopy was used to analyse the SAMs and showed that monolayers with no detectable oxygen content could be produced. The effect of exposing the samples to air at different temperatures was monitored to examine the rate of the oxidation process, which was found to vary strongly with temperature. Samples stored at room temperature were found to oxidise relatively quickly, while those kept in a refrigerator were slower. Storing samples in a freezer dramatically reduced the oxidation of the copper, such that samples kept for 10 weeks still did not show any clear evidence of oxygen incorporation.  相似文献   

2.
A novel hexapeptide was functionalized at the N-terminus by a lipoyl group for binding to gold substrates. Owing to the high content of α-aminoisobutyric acid residues, the peptide adopts a rigid helical conformation despite the shortness of its main chain. Binding of the peptide to gold was investigated by quartz crystal microbalance, cyclic voltammetry, X-ray photoelectron spectroscopy, and scanning tunneling microscopy under ultra-high vacuum conditions. Scanning tunneling microscopy experiments revealed that the peculiar self-assembly properties of this short helical peptide determine the complex morphology of the monolayer, showing ‘stripes’, i.e. peptide aggregates horizontally layered on the gold surface, and ‘holes’, i.e. Au vacancy islands coated by the peptide monolayer.  相似文献   

3.
Self-assembled monolayers (SAMs) of 4-trifluoromethyl-azobenzene-4′-methyleneoxy-alkanethiols (CF3– C6H4–N=N–C6H4–O–(CH2) n –SH on (111)-oriented poly-crystalline gold films on mica were examined by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The spectra are analyzed with the help of density-functional-theory calculations of the isolated molecule. Only one doublet is detected in the sulphur 2p spectra of the investigated SAMs, consistent with a thiolate bond of the molecule to the gold surface. The C 1s XP spectra and the corresponding XAS π * resonance exhibit a rich structure which is assigned to the carbon atoms in the different chemical surroundings. Comparing XPS binding energies of the azobenzene moiety and calculated initial-state shifts reveals comparable screening of all C 1s core holes. While the carbon 1s XPS binding energy lies below the π *-resonance excitation-energy, the reversed order is found comparing core ionization and neutral core excitation of the nitrogen 1s core-hole of the azo group. This surprising difference in core-hole binding energies is interpreted as site-dependent polarization screening and charge transfer among the densely packed aromatic moieties. We propose that a quenching of the optical excitation within the molecular layer is thus one major reason for the low trans to cis photo-isomerization rate of azobenzene in aromatic-aliphatic SAMs.  相似文献   

4.
Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.  相似文献   

5.
The present work focuses on the surface immobilization by self-assembly of pure and mixed Co-porphyrin (Co-Porph-PO3H2) and n-alkane phosphonic acids (n-CnH2n + 1PO3H2; n = 4, 5 and 10) from n-butanol solutions on gold substrates. The stability, amount, and packing of the phosphonic molecules attached to the Au (111) surface were investigated by electrochemical reductive desorption studies, and monolayers' thickness was estimated by ellipsometry. The morphological changes induced by the adsorption of n-decane phosphonic acid on gold were analysed by scanning tunnelling microscopy. The redox behavior of Co-Porph-PO3H2 SAMs was assessed in organic medium and compared that of Co-Porph-CO2CH3 precursor in solution, confirming the self-assembly of the metalloporphyrin molecules. With the purpose of reducing the electrostatic interactions between the porphyrin bulky terminal groups in the SAM, n-C5H11PO3H2 and n-C10H21PO3H2 were used to form mixed monolayers with Co-Porph-PO3H2 on gold. Intermediate electrochemical desorption potentials regarding those values of pure monolayers, as well as an increase of phosphonate surface density compared to that of Co-Porph-PO3H2 SAM, confirm the presence of two-component SAMs, which indicates that porphyrin moieties are diluted in the monolayer. The electrocatalytic activity of the immobilized molecules was demonstrated towards the reduction of molecular oxygen, in acidic medium.  相似文献   

6.
Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).  相似文献   

7.
A novel alkylthioacetyl-capped hydroxyethyl methacrylate monomer and its corresponding homopolymer have been synthesized and characterized. Direct chemisorption of these moieties have been carried out on gold-coated substrate and found to form a strong surface bonding. The surface coverage and the properties of the resultant self-assembled layers have been investigated by multiple surface characterization techniques (i.e. ellipsometry, GA-FTIR, XPS, AFM, and contact angle measurements). These analyses have all confirmed the occurrence of complete chemisorption reactions with typical n-alkanethiol self-assembled characteristics.  相似文献   

8.
Here we show that self-assembled monolayers on gold of double-stranded DNA oligomers interact with polarized electrons similarly to a strong and oriented magnetic field. The direction of the field for right-handed DNA is away from the substrate. Moreover, the layer shows very high paramagnetic susceptibility. Interestingly, thiolated single-stranded DNA oligomers on gold do not show this effect. The new findings are rationalized based on recent results in which high paramagnetism was measured for diamagnetic films adsorbed on diamagnetic substrates.  相似文献   

9.
10.
The spacing of chemical functional groups on self-assembled monolayers (SAMs) plays an important role in controlling the density of biomolecules in biochips and biosensors. In this sense, a mixed SAM made of two different terminal groups is a useful organic surface since spacing can be easily controlled by changing a relative mole fraction in a mixture solution. In this study, an acetylene-OCH2O(EG)3(CH2)11S-S(CH2)11(EG)3OCH2O-propene (Eneyne) SAM and mixed SAMs made by a mixture of (S(CH2)11(EG)3OCH2O-acetylene)2 (Diyne) and (S(CH2)11(EG)3OCH2O-propene)2 (Diene) were produced on gold substrates and measured by using ToF-SIMS. The secondary ion yield ratio of [Au·S(CH2)11(EG)3OCH2O-acetylene] to [Au·S(CH2)11(EG)3OCH2O-propene] was measured for each mixed SAM and plotted as a function of the mole fraction of Diyne to Diene in a SAM solution. The ion yield ratio of a mixed SAM produced from a solution with a mole fraction of 0.5 (i.e., 1:1 mixture) was 0.3, which corresponded well to the ion yield ratio measured from an Eneyne SAM. A time-dependent experiment of Eneyne SAM formation and immersion experiment of Eneyne SAM into Diyne solution or into Diene solution were performed. The relative ion yield ratio of 0.3 was due to a different secondary ion formation and not due to the difference in the amount of adsorbates on the surface, nor to the different binding strengths onto the gold surface. Our study shows that a mixed SAM with well-controlled spacing can be produced and quantified by using the ToF-SIMS technique.  相似文献   

11.
Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Aun) in comparison with the molecular ions (M) and clusters (MxAuy) by using Bi+, Bi3+, Bi5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.  相似文献   

12.
We report the formation of highly robust long-chained alkylsiloxane self-assembled monolayers (SAMs) on aluminum oxide films prepared by atomic-layer deposition (ALD). The surface chemistry and the morphological characteristics of the SAMs were examined by X-ray photoelectron spectroscopy, infrared spectroscopy, atomic-force microscopy, and contact-angle goniometry. The octadecylsiloxane-derived SAMs initially hydrolyze and deposit on the alumina surface as ∼1.8 nm thick, monolayer-high islands ≤50 nm in diameter. The size of these islands increases with time, likely through a surface-diffusion aggregation process. Coalescence of neighboring islands leads to a densely packed and robust monolayer on the alumina surface. The SAMs on ALD alumina are expected to be useful in a number of nanostructure applications where the combination of conformal alumina deposition and conformal coverage of the alumina by an organic layer is critical. PACS 81.16.Dn; 81.65.Kn; 82.45.Mp; 81.65.-b  相似文献   

13.
The relative reflectivity changes ΔR/R of a gold electrode surface caused by the deposition of monolayers of thallium, copper and lead from electrolytic solutions at underpotentials have been studied in situ in the photon energy range between 1.8 and 5.2 eV. The optical constants of the surface layer giving rise to this measured reflectivity change have been calculated and compared to the results of the electroreflectance effect on bare gold surfaces. It is shown that the reflectance change observed during the monolayer deposition is to first order due to a change in the gold electrode surface layer and not to absorption processes in the monolayer itself. The latter ones cause a fine structure superimposed to the substrate spectrum. The relatively strong change in the gold surface optical constants upon metal monolayer deposition is explained in terms of an enhanced electroreflectance effect due to the partially ionic character of the metal adatoms, which alters the free electron concentration in the substrate surface layer. Electroreflectance spectra obtained on gold surfaces covered with a monolayer of thallium compare favourably with dielectric loss functions computed for charged gold surfaces. This supports the assumption that the reflectivity changes observed upon metal monolayer deposition are mostly due to changes in the optical properties of the substrate metal surface.  相似文献   

14.
Standard positive photoresist techniques were adapted to generate sub-micron scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. Self-assembled monolayers formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists. The process underlying photopatterning of SAMs on gold is well-known at the phenomenological level. Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200 nm is necessary for oxidation to occur. In this study, solid state femtosecond laser of wavelength 800 nm is applied for photolithography. The results show that ultrafast laser of near infrared (NIR) range wavelength can replace deep UV laser source for photopatterning using thin organic films. The essential basis of our approach is the photochemical excitation of specific reactions in a particular functional group (in this case a thiolate sulfur atom) distributed with monolayer coverage on a solid surface. Femtosecond laser photolithography could be applied to fabricate the patterning of surface chemical structure and the creation of three-dimensional nanostructures by combination with suitable etching methods.  相似文献   

15.
Geometrically well-defined patterns of surface-immobilized proteins can be produced with several methods. We developed a method for patterning of proteins by means of specific, non-covalent interactions between a protein and a metal complex immobilized at the surface. In particular, reproducible patterns of lactoferrin have been obtained by exploiting the different adsorption properties of this protein on a OH-terminated self-assembled monolayer (SAM) or onto an iron-containing SAM present in certain regions of the pattern. The OH-terminated SAM was etched with a focused ion beam (FIB) in order to produce square regions of bare gold. These regions were selectively covered with a SAM of iron-terpyridine complex, formed via a stepwise procedure involving the initial formation of a mixed component SAM (containing the terpyridine ligand) and the subsequent reaction with an iron(II) salt in order to produce the complex. The patterned substrate was finally allowed to interact with a lactoferrin solution. It is shown that lactoferrin selectively and stably adsorbs on iron-containing layers, whereas it is not retained on the OH-terminated regions of the surface. The use of ToF-SIMS was crucial for obtaining this information, as well as for monitoring each sequential step necessary for the preparation of the patterns.  相似文献   

16.
Zinc oxide (ZnO) films with well-controlled morphologies have been prepared by electrochemical deposition. The different morphologies investigated are (i) flat and compact films, (ii) arrays of hexagonal nanocolumns, (iii) mesoporous films with open pores, and (iv) mesoporous films with pores filled with a surfactant (sodium dodecyl sulfate). Increasing the volume of voids in the film or the roughness gives rise to a dramatic increase in the layer wettability. The presence of surfactant in the film and/or the post-deposition binding of an alkylsilane (octadecylsilane) yield hydrophobic surfaces with contact angles measured as high as 145 after an optimized silane adsorption process.  相似文献   

17.
The properties of thin organic films offer many challenging opportunities for science and technology. A crucial requirement for the advancement of molecular film technology is the selective characterization and modification on an atomic level. Local proximal probes like Scanning Tunneling Microscopy (STM) or Atomic Force Microscopy (AFM) bear certainly the potential for this purpose. So far, however, mainly adsorbed organic molecules lying flat on a smooth substrate have been imaged with near atomic resolution. Here, we demonstrate the ability of STM to selectively image self-assembled monolayers of long-chain molecules (hexanethiol) oriented upright on the substrate Au(111) with molecular resolution. Upon proper choice of the tunneling parameters we can image the molecular head-group anchored at the substrate and/or the molecular tail group.  相似文献   

18.
Synthesis and preparation of self-assembled monolayers of a novel fullerene lipoic acid derivative on gold are reported. The presence of densely packed SAMs was confirmed by ellipsometry and cyclic voltammetry. The electrochemical response of the modified electrode in organic media exhibits the first two redox peaks characteristic of the extended π-electron system of fullerene. C60 surface coverage (1.4 × 10−10 mol cm−2) has been electrochemically determined by the redox process of the adsorbed fullerene moiety and by reductive desorption of the SAM in strong alkaline solution. Electrochemical data indicate that all four sulphur atoms are involved in the self-assembly process, providing an increase of SAM stability in comparison to mono or di-thiolated appended molecules. Visualisation of discrete fullerene molecules by scanning tunnelling microscopy supplied further evidence for gold modification and molecular distribution on the surface. Mixed monolayers of hexanethiol and fullerene derivatives in a proportion of 1:2 have been also studied with the purpose of controlling the amount and distribution of fullerene units on the gold surface.  相似文献   

19.
We report a scanning tunneling spectroscopy study on the size-tunable isolated gold nanoclusters grown on thiol/dithiol mixed self-assembled monolayers (SAMs) where the effect of neighboring clusters are practically excluded. The structure forms double tunnel junction system in which the spectra exhibit Coulomb staircases. With increasing cluster size the standard deviation of the offset charge distribution for clusters increases, accompanied with the increase of total capacitance. The results are qualitatively same with the previous ones where clusters are densely grown on the substrate, indicating that this behavior is an intrinsic property for the double tunnel junction structures of tip/vacuum/single cluster/SAMs/Au(1 1 1) systems.  相似文献   

20.
T. Zheng 《Applied Surface Science》2006,252(23):8261-8263
We examine conductance phenomenon for Au quantum point contacts (QPC) formed using a crossed-wire geometry experimental set-up. When one of the wires is coated with a self-assembled monolayer of an alkanethiol, we find that a conductance plateau indicative of a QPC can be stable for tens of seconds, exceeding typical periods of stability by several orders of magnitude. This extended stability is attributed to the inhibition of the diffusion of Au atoms away from the contact area by the presence of the self-assembled monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号