首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A randomly evolving graph, with vertices immigrating at rate n and each possible edge appearing at rate 1/n, is studied. The detailed picture of emergence of giant components with O(n2/3) vertices is shown to be the same as in the Erdős–Rényi graph process with the number of vertices fixed at n at the start. A major difference is that now the transition occurs about a time t=π/2, rather than t=1. The proof has three ingredients. The size of the largest component in the subcritical phase is bounded by comparison with a certain multitype branching process. With this bound at hand, the growth of the sum‐of‐squares and sum‐of‐cubes of component sizes is shown, via martingale methods, to follow closely a solution of the Smoluchowsky‐type equations. The approximation allows us to apply results of Aldous [Brownian excursions, critical random graphs and the multiplicative coalescent, Ann Probab 25 (1997), 812–854] on emergence of giant components in the multiplicative coalescent, i.e., a nonuniform random graph process. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 17: 79–102, 2000  相似文献   

2.
The Erd?s‐Rényi process begins with an empty graph on n vertices, with edges added randomly one at a time to the graph. A classical result of Erd?s and Rényi states that the Erd?s‐Rényi process undergoes a phase transition, which takes place when the number of edges reaches n/2 (we say at time 1) and a giant component emerges. Since this seminal work of Erd?s and Rényi, various random graph models have been introduced and studied. In this paper we study the Bohman‐Frieze process, a simple modification of the Erd?s‐Rényi process. The Bohman‐Frieze process also begins with an empty graph on n vertices. At each step two random edges are presented, and if the first edge would join two isolated vertices, it is added to a graph; otherwise the second edge is added. We present several new results on the phase transition of the Bohman‐Frieze process. We show that it has a qualitatively similar phase transition to the Erd?s‐Rényi process in terms of the size and structure of the components near the critical point. We prove that all components at time tc ? ? (that is, when the number of edges are (tc ? ?)n/2) are trees or unicyclic components and that the largest component is of size Ω(?‐2log n). Further, at tc + ?, all components apart from the giant component are trees or unicyclic and the size of the second‐largest component is Θ(?‐2log n). Each of these results corresponds to an analogous well‐known result for the Erd?s‐Rényi process. Our proof techniques include combinatorial arguments, the differential equation method for random processes, and the singularity analysis of the moment generating function for the susceptibility, which satisfies a quasi‐linear partial differential equation. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

3.
A connected graph G is a cactus if any two of its cycles have at most one common vertex. In this article, we determine graphs with the largest signless Laplacian index among all the cacti with n vertices and k pendant vertices. As a consequence, we determine the graph with the largest signless Laplacian index among all the cacti with n vertices; we also characterize the n-vertex cacti with a perfect matching having the largest signless Laplacian index.  相似文献   

4.
We study the largest component of a random (multi)graph on n vertices with a given degree sequence. We let n. Then, under some regularity conditions on the degree sequences, we give conditions on the asymptotic shape of the degree sequence that imply that with high probability all the components are small, and other conditions that imply that with high probability there is a giant component and the sizes of its vertex and edge sets satisfy a law of large numbers; under suitable assumptions these are the only two possibilities. In particular, we recover the results by Molloy and Reed on the size of the largest component in a random graph with a given degree sequence. We further obtain a new sharp result for the giant component just above the threshold, generalizing the case of G(n,p) with np = 1 + ω(n)n?1/3, where ω(n) → arbitrarily slowly. Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

5.
A tricyclic graph of order n is a connected graph with n vertices and n + 2 edges. In this paper, all tricyclic graphs whose second largest eigenvalue does not exceed 1 are identified.  相似文献   

6.
A geometric graph is a graph embedded in the plane in such a way that vertices correspond to points in general position and edges correspond to segments connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: determine the largest number h(n) such that when we remove any set of h(n) edges from any complete geometric graph on n vertices, the resulting graph still has a noncrossing Hamiltonian path. We prove that . We also establish several results related to special classes of geometric graphs. Let h1(n) denote the largest number such that when we remove edges of an arbitrary complete subgraph of size at most h1(n) from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We prove that . Let h2(n) denote the largest number such that when we remove an arbitrary star with at most h2(n) edges from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We show that h2(n)=⌈n/2⌉-1. Further we prove that when we remove any matching from a complete geometric graph the resulting graph will have a noncrossing Hamiltonian path.  相似文献   

7.
Given a planar graph G, what is the largest subset of vertices of G that induces a forest? Albertson and Berman [2] conjectured that every planar graph has an induced subgraph on at least half of the vertices that is a forest. For bipartite planar graphs, Akiyama and Wanatabe [1] conjectured that there is always an induced forest of size at least 5n/8. Here we prove that every triangle-free (and therefore every bipartite) planar graph on n vertices has an induced forest of size at least (17n+24)/32.  相似文献   

8.
We study the behavior of a random graph process (G(n, M))02n for M(n) = n/2 + s and ∣s3n?;2 → ∞. Among others we find the number of components in G(n, M) and estimate the number of vertices and edges in the kth largest component of G(n, M), for any natural number k, Moreover, it is shown that, with probability 1 –o(1), when M(n) = n/2 + s, s3n?2 →?∞, then during a random graph process in some step M1 > M a “new” largest component will emerge, whereas when s3n?2→∞, the largest component of G(n, M) remains largest until the very end of the process.  相似文献   

9.
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1,2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α?(n-1)/2, and in particular all very well-covered graphs.  相似文献   

10.
A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we extend this ordering by determining the fifth to the ninth largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices.  相似文献   

11.
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. A cactus is a connected graph in which two cycles have at most one vertex in common. In this paper, we first determine graphs with the largest Harary index among all the cacti with n vertices and a perfect matching. Then we characterize the cacti with given order, cut edges and maximum Harary index. Finally, we establish upper bounds for Harary index among all cacti with n vertices and k pendant vertices.  相似文献   

12.
13.
Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered.  相似文献   

14.
The problem of how “near” we can come to a n-coloring of a given graph is investigated. I.e., what is the minimum possible number of edges joining equicolored vertices if we color the vertices of a given graph with n colors. In its generality the problem of finding such an optimal color assignment to the vertices (given the graph and the number of colors) is NP-complete. For each graph G, however, colors can be assigned to the vertices in such a way that the number of offending edges is less than the total number of edges divided by the number of colors. Furthermore, an Ω(epn) deterministic algorithm for finding such an n-color assignment is exhibited where e is the number of edges and p is the number of vertices of the graph (e?p?n). A priori solutions for the minimal number of offending edges are given for complete graphs; similarly for equicolored Km in Kp and equicolored graphs in Kp.  相似文献   

15.
The following result is proved: Consider a random graph on n vertices where each vertex chooses randomly a set of c neighbors. If c?6, then the graph has a 1-factor, with probability→1 as n→∞.  相似文献   

16.
A benzenoid graph is a finite connected plane graph with no cut vertices in which every interior region is bounded by a regular hexagon of a side length one. A benzenoid graph G is elementary if every edge belongs to a 1-factor of G. A hexagon h of an elementary benzenoid graph is reducible, if the removal of boundary edges and vertices of h results in an elementary benzenoid graph. We characterize the reducible hexagons of an elementary benzenoid graph. The characterization is the basis for an algorithm which finds the sequence of reducible hexagons that decompose a graph of this class in O(n2) time. Moreover, we present an algorithm which decomposes an elementary benzenoid graph with at most one pericondensed component in linear time.  相似文献   

17.
Let be a random graph process in which in each step we add to a graph a new edge, chosen at random from all available pairs. Define the leader of G(n, M) as either the unique largest component or, if G(n, M) contains many components of the maximum size, the one from the largest components which emerged first during the process. We show that the longest period between two changes of leaders in the random graph process is, with probability tending to 1 as n →∞, of the order of n/log log n/log n. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
We study the phase transition of the minimum degree multigraph process. We prove that for a constant hg ≈︁ 0.8607, with probability tending to 1 as n, the graph consists of small components on O(log n) vertices when the number of edges of a graph generated so far is smaller than hgn, the largest component has order roughly n2/3 when the number of edges added is exactly hgn, and the graph consists of one giant component on Θ(n) vertices and small components on O(log n) vertices when the number of edges added is larger than hgn. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

19.
MingChu Li 《Discrete Mathematics》2006,306(21):2682-2694
A known result obtained independently by Fan and Jung is that every 3-connected k-regular graph on n vertices contains a cycle of length at least min{3k,n}. This raises the question of how much can be said about the circumferences of 3-connected k-regular claw-free graphs. In this paper, we show that every 3-connected k-regular claw-free graph on n vertices contains a cycle of length at least min{6k-17,n}.  相似文献   

20.
Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one. In this paper we determine the graph with the largest spectral radius among all bicyclic graphs with n vertices and diameter d. As an application, we give first three graphs among all bicyclic graphs on n vertices, ordered according to their spectral radii in decreasing order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号