首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luc Blanchet 《Pramana》2004,63(4):685-701
The equations of motion of two point masses in harmonic coordinates are derived through the third post-Newtonian (3PN) approximation. The problem of selffield regularization (necessary for removing the divergent self-field of point particles) is dealt with in two separate steps. In the first step the extended Hadamard regularization is applied, resulting in equations of motion which are complete at the 3PN order, except for the occurrence of one and only one unknown parameter. In the second step the dimensional regularization (ind dimensions) is used as a powerful argument for fixing the value of this parameter, thereby completing the 3-dimensional Hadamard-regularization result. The complete equations of motion and associated energy at the 3PN order are given in the case of circular orbits.  相似文献   

2.
The nonrigid (effective) rotation-large-amplitude internal motion Hamiltonian (NRLH) of the general molecule with one or more large-amplitude vibrations has been derived to the order of magnitude κ2TVIB. The derivation takes advantage of the idea of a nonrigid reference configuration and uses the contact transformation method as a mathematical tool. The NRLH has a form fairly similar to that of the effective rotation Hamiltonian of semirigid (i.e., normal) molecules. From a careful examination of the Eckart-Sayvetz conditions and of the Taylor expansions of the potential energy surface in terms of curvilinear displacement coordinates, three types of large-amplitude internal coordinates of different physical meaning (effective large-amplitude internal coordinates, real large-amplitude internal coordinates, and reaction path coordinates) are described. To test the ideas and the formulas the effective bending potential function of the C3 molecule in its ground electronic and ground stretching vibrational state is calculated from the ab initio potential energy surface given by W. P. Kraemer, P. R. Bunker, and M. Yoshimine (J. Mol. Spectrosc. 107, 191–207 (1984)). The calculations were carried out by using either the effective or the real large-amplitude bending coordinate of C3. The NRLH theory is compared to the nonrigid bender theory at a theoretical level as well as through the results of the test calculations.  相似文献   

3.
The complete set of hydromagnetic equations is transformed into Poisson equations and equations of motion for flux densities and their associated variables. The toroidal components of the vector potential A and of the momentum density aπv are represented by the po loidal flux densities Ψ and Ψ, respectively, for which the equations of motion are derived. The poloidal components A and a are represen ed by the potentials atΦ, U and φ, u, for which we obtain Poisson equations in the poloidal plane. Thus one has to solve two Dirichlet and two von Neumann problems at every time step. The source terms of the four Poisson equations define the remaining four variables, namely, Λ = ▽ · A,Ω=(▽×A)ζ/R, λ=?·a, and ω=(?×a)ζ/R, for which equations of motion are also derived. In the limit of small toroidicity ? we look fo r a selfconsistent scaling of the equations with v~ε. But the curl of v×B in Faraday's law creates a toroidal plasma component of B which is one order of magnitude larger than in the case of a low β equilibrium; therefore, the motion becomes fully three-dimensional. Finally, an artificial pressure law is needed to balance the lowest order of the Lorentz force. The conclusion is then that the scaling laws previously used are not applicable for toroidal geometry, and that the effort to obtain numerical solutions is not dramatically higher than without using any scaling law.  相似文献   

4.
The motion of an electric charge in the field of a magnetic monopole is described by means of a Lagrangian model written in terms of the Clifford algebra of the physical space. The equations of motion are written in terms of a radial equation (involving r=|r|, where r(t) is the charge trajectory) and a rotor equation (written in terms of an unitary operator spinor R). The solution corresponding to the charge trajectory in the field of a magnetic monopole is given in parametric form. The model can be generalized in order to describe the motion of a charge in the field of a magnetic monopole and other additional central forces, and as an example, we discuss the classical ones involving linear and inverse square interactions.  相似文献   

5.
String-loop corrections to magnetic black holes are studied. 4D effective action is obtained by compactification of the heterotic string theory on the manifold KT2 or on a suitable orbifold yielding N=1 supersymmetry in 6D. In the resulting 4D theory with N=2 local supersymmetry, the prepotential receives only one-string-loop perturbative correction. The loop-corrected black hole is obtained in two approaches: (i) by solving the system of the Einstein-Maxwell equations of motion derived from the loop-corrected effective action and (ii) by solving the system of spinor Killing equations (conditions for the supersymmetry variations of the fermions to vanish) and Maxwell equations. We consider a particular tree-level solution with the magnetic charges adjusted so that the moduli connected with the metric of the internal two-torus are constant. In this case, the loop correction to the prepotential is independent of coordinates, and it is possible to solve the system of the Einstein-Maxwell and spinor Killing equations in the first order in string coupling analytically. The set of supersymmetric solutions of the loop-corrected spinor Killing equations is contained in a larger set of solutions of the equations of motion derived from the string-loop-corrected effective action. Loop corrections to the metric and dilaton are large at small distances from the center of the black hole.  相似文献   

6.
The dynamics of the spherically symmetric system of gravitation interacting with scalar and Yang-Mills fields is presented in the context of the canonical formalism. The gauge group considered is a general (compact and semisimple) N parameter group. The scalar (Higgs) field transforms according to an unspecified M-dimensional orthogonal representation of the gauge group. The canonical formalism is based on Dirac's techniques for dealing with constrained hamiltonian systems. First the condition that the scalar and Yang-Mills fields and their conjugate momenta be spherically symmetric up to a gauge is formulated and solved for global gauge transformations, finding, in a general gauge, the explicit angular dependence of the fields and conjugate momenta. It is shown that if the gauge group does not admit a subgroup (locally) isomorphic to the rotation group, then the dynamical variables can only be manifestly spherically symmetric. If the opposite is the case, then the number of allowed degrees of freedom is connected to the angular momentum content of the adjoint representation of the gauge group. Once the suitable variables with explicit angular dependence have been obtained, a reduced action is derived by integrating away the angular coordinates. The canonical formulation of the problem is now based on dynamical variables depending only on an arbitrary radial coordinate r and an arbitrary time coordinate t. Besides the gravitational variables, the formalism now contains two pairs of N-vector variables (R, πr), (Θ, πΘ), corresponding to the allowed Yang-Mills degrees of freedom and one pair of M-vector variables, (h, πh), associated with the original scalar field. The reduced Hamiltonian is invariant under a group of r-dependent gauge transformations such that R plays the role of the gauge field (transforming in the typically inhomogeneous way) and in terms of which the gauge covariant derivatives of Θ and h naturally appear. No derivatives of R appear in the Hamiltonian and the gauge freedom allows us to define a gauge in which R is zero. Also the r and t coordinates are fixed in a way consistent with the equations of motion. Some nontrivial static solutions are found. One of these solutions is given in closed form; it is singular and corresponds to a generalization of the singular solution found in the literature with different degrees of generality and the geometry is described by the Reissner-Nordström metric. The other solution is defined through its asymptotic behavior. It generalizes to curved space the finite energy solution discyssed by Julia and Zee in flat space.  相似文献   

7.
We present the development of a sliding mesh capability for an unsteady high order (order ? 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the xy plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.  相似文献   

8.
In this paper we develop a general theory of the spin dynamics of anisotropic Fermi superfluids of the generalized BCS type, under conditions which should be realistic for any such phase of liquid 3He occurring below 3 mK. No restrictions are placed on the nature of the pairing configuration. The system is described in terms of the total spin vector S, and a vector T(n) which describes the amplitude and spin quantization axes of the pairs forming at a given point n on the Fermi surface; the kinematic relations between these quantities are emphasized. An approximation of the Born-Oppenheimer type is used to derive the general equations of motion of S and T; it is pointed out that relaxation of T due to collisions is inhibited by the coherent nature of the superfluid state. The equations of motion are solved for the particular case of unsaturated c.w. resonance, and it is shown that the nature of the transverse (usual) resonance spectrum is a strong function of the kind of configuration occurring; in particular, either one or two finite-frequency resonances may occur, depending on the configuration. A resonance is also predicted to occur when the r.f. field is polarized along the static external field. Specific predictions of the form of the transverse and “longitudinal” spectra are made for all the unitary l = 1 states, and it is shown that these predictions are unaffected by renormalization effects. The “Balian-Werthamer” state is predicted to show a longitudinal resonance but no transverse shift. The theory is compared with other approaches to the problem and its relevance to the anomalous low-temperature phases of liquid 3He is discussed.  相似文献   

9.
Recently,it has been generally claimed that a low order post-Newtonian(PN)Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown.However,there is no difficulty in some cases.In fact,this claim is shown analytically by means of a special first-order post-Newtonian(1PN)Lagrangian formulation of relativistic circular restricted three-body problem,where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders,but have converged functions.It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.  相似文献   

10.
A generally covariant formulation of classical electrodynamics for charges of finite extension has been developed. The charges are required to maintain a prescribed “rigid” shape throughout the course of their motion. An action principle is formulated for the coupled system consisting of the charges plus electromagnetic and gravitational fields. The action principle yields a complicated set of coupled integro-differential equations for the motion and fields. A perturbation expansion in powers of the size of the charge distribution is obtained. In the limit that the size of the charge tends to zero, only a few kinematical features survive in the equations of motion. The resulting equations of motion have the DeWitt-Brehme [Ann. Phys.9 (1969), 220] form, but with additional curvature-coupling terms which were omitted by them owing to an algebraic error.  相似文献   

11.
The Inönü-Wigner contraction from the SO(4) group to the Euclidean E(3) group is used to relate the separation of variables in Helmholtz equations for two corresponding homogeneous spaces. We show how the six systems of coordinates on the three-dimensional sphere contracted to nine systems of coordinates on Euclidean space. As a consequence of the Inönü-Wigner contraction we also consider contractions of the integrals of motion.  相似文献   

12.
The motion of dunes and their morphology is a fascinating, largely unexplored subject. Already the barchan, the simplest moving dune, poses many questions. I will present some results of field-measurements on desert and coastal dunes. Then I will present a model which consists of three coupled equations of motion for the topography, the shear stress of the wind and the sand flux. These evolution equations are verified on the experimental data and new possibilities of simulations of dunes are put in perspective. To cite this article: H.J. Herrmann, C. R. Physique 3 (2002) 197–206.  相似文献   

13.
14.
We consider the two-body problem in post-Newtonian approximations of general relativity. We report the recent results concerning the equations of motion, and the associated Lagrangian formulation, of compact binary systems, at the third post-Newtonian order (∼1/c6 beyond the Newtonian acceleration). These equations are necessary when constructing the theoretical templates for searching and analyzing the gravitational-wave signals from inspiralling compact binaries in VIRGO and LISA type experiments.  相似文献   

15.
Time-dependent Hartee-Fock (TDHF) equations are derived for nuclear systems with internal dynamical group U(r). The coordinates which appear in the TDHF equations are the coordinates which parameterize the U(r) coherent states. The TDHF orbits for the hamiltonian H are identical with equations of motion for a classical system described by the hamiltonian function 〈H〉 obtained directly from the operator H. This quantum-classical correspondence facilitates interpretation of TDHF orbits. The phenomena of coexistence and critical elongation are discusses, as is the relation between the critical points of the function 〈H〉 and the spectral properties fo the operator H.  相似文献   

16.
We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schro¨dinger, q-KleinGordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601(2011), EPL 118,61004(2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle.These q-fields are meaningful at very high energies(Te V scale) for q = 1.15, high energies(Ge V scale) for q = 1.001,and low energies(Me V scale) for q =1.000001 [Nucl. Phys. A 955(2016) 16 and references therein].(See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.  相似文献   

17.
18.
A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J2 perturbation, namely secular J2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.  相似文献   

19.
We discuss the Hamiltonian formulation of gravity in four-dimensional spacetime under Bondi-like coordinates {v,r,x~a,a=2,3}. In Bondi-like coordinates, the three-dimensional hypersurface is a null hypersurface, and the evolution direction is the advanced time v. The internal symmetry group SO(1,3) of the four-dimensional spacetime is decomposed into SO(1,1), SO(2), and T~±(2), whose Lie algebra so(1,3) is decomposed into so(1,1), so(2), and t~±(2) correspondingly. The SO(1,1) symmetry is very obvious in this type of decomposition, which is very useful in so(1,1) BF theory. General relativity can be reformulated as the four-dimensional coframe(e_μ~I) and connection(ω_μ~(IJ))dynamics of gravity based on this type of decomposition in the Bondi-like coordinate system. The coframe consists of two null 1-forms e~-, e~+and two spacelike 1-forms e~2, e~3. The Palatini action is used. The Hamiltonian analysis is conducted by Dirac's methods. The consistency analysis of constraints has been done completely. Among the constraints, there are two scalar constraints and one two-dimensional vector constraint. The torsion-free conditions are acquired from the consistency conditions of the primary constraints about π_(IJ)~μ. The consistency conditions of the primary constraints π_(IJ)~0=0 can be reformulated as Gauss constraints. The conditions of the Lagrange multipliers have been acquired. The Poisson brackets among the constraints have been calculated. There are 46 constraints including 6 first-class constraints π_(IJ)~0=0 and 40 second-class constraints. The local physical degrees of freedom is 2.The integrability conditions of Lagrange multipliers n_0, l_0, and e_0~A are Ricci identities. The equations of motion of the canonical variables have also been shown.  相似文献   

20.
Six motion integrals for a relativistic charge in the field of a transverse linearly polarized electromagnetic wave propagating with an arbitrary phase velocity u>c were obtained by solving the canonical equations of motion. On the basis of these integrals, the charge trajectory as a function of the wave phase is analyzed in a fixed coordinate system. The coordinates, time, and phase are related by elliptic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号