首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A polymer/layered silicate composite based on dimethyldioctadecylanimonium bentonite/chitosan magnetic nanoparticles was synthesized and characterized by field emission transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry. The prepared nanocomposite was used to isolate and preconcentrate celecoxib from human breast milk, urine and plasma samples. In this method, dimethyldioctadecylanimonium bentonite increases the accessibility of binding sites and adsorption capacity by high microporosity and large surface area, that has been realized for the first time in a magnetic chitosan nanoparticle support. A fractional factorial design was utilized for screening the experimental parameters. The effective parameters were then optimized by Box–Behnken design. Under the optimized conditions, the developed method exhibited wide linear ranges of 5–500 μg L−1 for plasma and urine and 10–500 μg L−1 for breast milk samples with satisfactory recoveries in the range of 96.7–99.0%. Limit of detection and quantification of celecoxib were in the ranges 0.3–3.2 and 0.99–10.56, respectively. The enrichment factors were obtained in the ranges 64.5–66.0, while precisions were <3.7%.  相似文献   

2.
Cholesterol-modified chitosan conjugate with succinyl linkages (CHCS) was synthesized and characterized by fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR). The degree of substitution (DS) of cholesterol moiety determined by elemental analysis was 7.3%. The self-aggregation behavior of CHCS was evaluated by the fluorescence probe technique and the critical aggregation concentration (CAC) was 1.16 × 10−2 mg mL−1 in 0.1 M acetic acid solution. CHCS formed monodisperse self-aggregated nanoparticles with a roughly spherical shape and a mean diameter of 417.2 nm by probe sonication in aqueous media. Epirubicin (EPB), as a model anticancer drug, was physically entrapped inside CHCS self-aggregated nanoparticles by the remote loading method and the characteristics of EPB-loaded CHCS self-aggregated nanoparticles were analyzed using dynamic laser light scattering (DLLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. EPB-loaded CHCS self-aggregated nanoparticles were almost spherical in shape and their size increased from 338.2 to 472.9 nm with the EPB-loading content increasing from 7.97% to 14.0%. The release behavior of EPB from CHCS self-aggregated nanoparticles was studied in vitro by dialysis method. The results showed that EPB release rate decreased with the pH increase of the release media. In phosphate buffered saline (PBS, pH 7.4), the EPB release was very slow and the total release amount was about 24.9% in 48 h.  相似文献   

3.
本文通过聚乙二醇化的聚乙烯亚胺与壳聚糖反应,得到了水溶性良好的聚乙二醇化聚乙烯亚胺接枝的壳聚糖( mPEG-O-CS-PEI)。研究表明,纳米mPEG-O-CS-PEI对细胞SMMC7721的转染效率为7.1%。  相似文献   

4.
To improve the efficiency of the use of nuclease P1, enzyme immobilization technology was applied using nuclease P1. Characterization of immobilized nuclease P1 on different supports was studied. The results showed that the optimum pH and temperature of nuclease P1 immobilized via different supports were enhanced. The immobilized enzyme was obviously stable when stored for long periods and was reusable. The best results were obtained when nuclease P1 was immobilized on chitosan nanoparticles. The nanoparticles were applied to protect the activity of nuclease P1 and improved enzyme activity by 13.17% over that of free nuclease P1 at the same conditions. The Michaelis constant Km and V max were determined for free and immobilized enzyme as well.  相似文献   

5.
Nanofibrous membrane with a fiber diameter of 80-150 nm was fabricated from mixed chitosan/poly(vinyl alcohol) (PVA) solution by an electrospinning process. Field emission scanning electron microscope and transmission electron microscope were used to characterize the morphology of the nanofibrous membrane. It was found that chitosan nanofibrous membrane with stabilized morphology could be prepared through removing most of PVA from the nascent one with 0.5 M NaOH aqueous solution. This treatment also resulted in an obvious decrease in fiber diameter. The stabilized chitosan nanofibrous membrane was explored as support for enzyme immobilization due to the characteristics of excellent biocompatibility, high surface/volume ratio, and large porosity. Lipase from Candida rugosa was immobilized on the nanofibrous membrane using glutaraldehyde (GA) as coupling reagent. The properties of the immobilized lipase were assayed and compared with the free one. Results showed that, the observed lipase loading on this nanofibrous membrane was up to 63.6 mg/g and the activity retention of the immobilized lipase was 49.8% under the optimum condition. The pH and thermal stabilities of lipase were improved after it was immobilized on the chitosan nanofibrous membrane. In addition, the experimental results of reusability and storage stability indicated that the residual activities of the immobilized lipase were 46% after 10 cycles and 56.2% after 30 days, which were obviously higher than that of the free one.  相似文献   

6.
Synthesis of chitosan–ZnO nanoparticles (CS–ZnONPs) composite beads was performed by a polymer-based method. The resulting bionanocomposite was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) spectroscopy and infrared spectroscopy (FT-IR). Adsorption applications for removal of pesticide pollutants were conducted. The optimum conditions, including adsorbent dose, agitating time, initial concentration of pesticide and pH on the adsorption of pesticide by chitosan loaded with zinc oxide nanoparticles beads were investigated. Results showed that 0.5 g of the bionanocomposite, in room temperature and pH 7, could remove 99% of the pesticide from permethrin solution (25 ml, 0.1 mg L−1), using UV spectrophotometer at 272 nm. Then, the application of the adsorbent for pesticide removal was studied in the on-line column. The column was regenerated with NaOH solution (0.1 M) completely, and then reused for adsorption application. The CS–ZnONPs composite beads appear to be the new promising material in water treatment application with 56% regeneration after 3 cycles.  相似文献   

7.
This research was aim to develop novel cyclodextrin/chitosan(CD/CS) nanocarriers for insoluble drug delivery through the mild ionic gelation method previously developed by our lab. A series of different bcyclodextrin(β-CD) derivatives were incorporated into CS nanoparticles including hydroxypropyl-bcyclodextrin(HP-β-CD), sulphobutylether-β-cyclodextrin(SB-β-CD), and 2,6-di-O-methy-β-cyclodextrin(DM-β-CD). Various process parameters for nanoparticle preparation and their effects on physicochemical properties of CD/CS nanoparticles were investigated, such as the type of CD derivatives,CD and CS concentrations, the mass ratio of CS to TPP(CS/TPP), and p H values. In the optimal condition,CD/CS nanoparticles were obtained in the size range of 215–276 nm and with the zeta potential from30.22 m V to 35.79 m V. Moreover, the stability study showed that the incorporation of CD rendered the CD/CS nanocarriers more stable than CS nanoparticles in PBS buffer at p H 6.8. For their easy preparation and adjustable parameters in nanoparticle formation as well as the diversified hydrophobic core of CD derivatives, the novel CD/CS nanoparticles developed herein might represent an interesting and versatile drug delivery platform for a variety of poorly water-soluble drugs with different physicochemical properties.  相似文献   

8.
Biocomposites comprising chitosan (CTS) trapped in an epoxidized natural rubber (ENR) was prepared by homogenizing CTS in ENR50 (ENR with about 50% epoxy content) latex in the presence of curing agents and acetic acid. Micrographs of CTS-t-ENR reveal no phased-out entity. Infrared spectra of CTS-t-ENR show only vibrational bands belonging to CTS and ENR, affirming that the former was not bonded but immobilized in the matrix of the latter. CTS loading up to 5 phr resulted in the increase in the tensile strength and elongation at break, modulus of the CTS-t-ENR. Thermal stability of CTS-t-ENR is higher than that of CTS but lower than that of ENR. Increase in CTS loading from 2.5 to 20 phr resulted in the decrease in toluene absorbency but increase in water uptake of CTS-t-ENR.  相似文献   

9.
The linoleic acid (LA)-grafted chitosan oligosaccharide (CSO) (CSO-LA) was synthesized in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and the effects of molecular weight of CSO and the charged amount of LA on the physicochemical properties of CSO-LA were investigated, such as CMC, graft ratio, size, zeta potential. The results showed that these chitosan derivatives were able to self-assemble and form spherical shape polymeric micelles with the size range of 150.7–213.9 nm and the zeta potential range of 57.9–79.9 mV, depending on molecular weight of CSO and the charged amount of LA. Using doxorubicin (DOX) as a model drug, the DOX-loaded CSO-LA micelles were prepared by dialysis method. The drug encapsulation efficiencies (EE) of DOX-loaded CSO-LA micelles were as high as about 75%. The sizes of DOX-loaded CSO-LA micelles with 20% charged DOX (relating the mass of CSO-LA) were near 200 nm, and the drug loading (DL) capacity could reach up to 15%. The in vitro release studies indicated that the drug release from the DOX-loaded CSO-LA micelles was reduced with increasing the graft ratio of CSO-LA, due to the enhanced hydrophobic interaction between hydrophobic drug and hydrophobic segments of CSO-LA. Moreover, the drug release rate from CSO-LA micelles was faster with the drug loading. These data suggested the possible utilization of the amphiphilic micellar chitosan derivatives as carriers for hydrophobic drugs for improving their delivery and release properties.  相似文献   

10.
Cholesterol-modified glycol chitosan (CHGC) conjugate was synthesized and characterized by FTIR and 1H NMR. The degree of substitution (DS) was 6.7 cholesterol groups per 100 sugar residues of glycol chitosan. CHGC formed self-aggregated nanoparticles with a roughly spherical shape and a mean diameter of 228 nm by probe sonication in aqueous medium. The physicochemical properties of the self-aggregated nanoparticles were studied using dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. The critical aggregation concentration (CAC) of self-aggregated nanoparticles in aqueous solution was 0.1223 mg/mL. Indomethacin (IND), as a model drug, was physically entrapped into the CHGC nanoparticles by dialysis method. The characteristics of IND-loaded CHGC (IND-CHGC) nanoparticles was analyzed using DLS, TEM and high performance liquid chromatography (HPLC). The IND-CHGC nanoparticles were almost spherical in shape and their size increased from 275 to 384 nm with the IND-loading content increasing from 7.14% to 16.2%. The in vitro release behavior of IND from CHGC nanoparticles was studied by a dialysis method in phosphate buffered saline (PBS, pH 7.4). IND was released in a biphasic way. The initial rapid release in 2 h and slower release for up to 12 h were observed. The results indicated that CHGC nanoparticles had a potential as a drug delivery carrier.  相似文献   

11.
12.
A novel and simple method for delivery of adriamycin (ADR) was developed using self-aggregates of deoxycholic acid-modified chitosan. Deoxycholic acid was covalently conjugated to chitosan via EDC-mediated reaction to generate self-aggregated chitosan nanoparticles. ADR was physically entrapped inside the self-aggregates and the characteristics of ADR-loaded chitosan self-aggregates were analyzed by dynamic light scattering, fluorescence spectroscopy, and atomic force microscopy (AFM). The maximum amount of entrapped ADR reached 16.5 wt% of chitosan self-aggregates, suggesting a loading efficiency of 49.6 wt%. The size of ADR-loaded self-aggregates increased with increasing the loading content of ADR. AFM images showed spherical shape of ADR-loaded self-aggregates, and ADR was slowly released from chitosan self-aggregates in PBS solution (pH 7.2). Received: 24 April 2000/Accepted: 11 July 2000  相似文献   

13.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记阻抗型免疫传感器的制备及应用,基于石墨烯、纳米金在玻碳电极表面组装制备传感器,通过循环伏安法、交流阻抗法对制备的传感器进行表征。在优化的实验条件下,该免疫传感器的阻抗值随着检测溶液中癌胚抗原(CEA)浓度的增大而增大,并在0.1~85 ng/mL CEA范围内呈线性关系,回归方程为△Ret=1605.55+39.26ρ;检测限为0.04 ng/mL(R=0.9992)。该免疫传感器可用于临床上对CEA的检测。  相似文献   

14.
ABSTRACT

Biogenic synthesis of bimetallic nanoparticles (gold – AuNp and selenium – SeNp) using inexpensive Tryptophan Enriched Banana Peel Media for the growth of marine isolate (Exiguobacterium aestuarii SBG4 MH185868). The response surface methodology is employed for optimizing production conditions. The surface plasmon resonance band showed λmax at 540?nm (AuNp) and 284?nm (SeNp). FTIR and zeta potential analysis confirmed the stability, whereas XRD spectra revealed the nature of nanoparticles obtained at optimum conditions. SEM micrographs showed nanospheres of the following size: AuN, 30?±?5 nm and SeNp, 50?±?5 nm. Biocompatibility of Np evaluated by the hemolytic activity showed <20% hemolysis even at highest concentrations (100?µg/ml). AuNp showed the least cytotoxicity, whereas SeNp showed considerable cytotoxicity against the breast cancer cell lines MCF – 7 and MDA-MB-231. Hence, we utilized the environment-friendly growth media for the controlled synthesis of dual Np using single bacterial strain involving feasible steps in downstream processing.  相似文献   

15.
Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at ∼0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcolohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biometarials for various analytical and pharmaceutical applications. Figure The electrochemical method for SNP detection using PNA probes and chitosan nanoparticles takes advantage of the significant structural and physicochemical differences between PNA/DNA and DNA/DNA duplexes. Single-stranded DNA specific enzymes selectively choose these SNP sites and hydrolyze the DNA molecules on gold electrode (AuE) surface. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Chitosan nanocomposites were prepared from chitosan and gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) of ~5 nm size. Transmission electron microscopy (TEM) showed the NPs in chitosan did not aggregate until higher concentrations (120-240 ppm). Atomic force microscopy (AFM) demonstrated that the nanocrystalline domains on chitosan surface were more evident upon addition of AuNPs (60 ppm) or AgNPs (120 ppm). Both nanocomposites showed greater elastic modulus, higher glass transition temperature (T(g)) and better cell proliferation than the pristine chitosan. Additionally, chitosan-Ag nanocomposites had antibacterial ability against Staphylococcus aureus. The potential of chitosan-Au nanocomposites as hemostatic wound dressings was evaluated in animal (rat) studies. Chitosan-Au was found to promote the repair of skin wound and hemostasis of severed hepatic portal vein. This study indicated that a small amount of NPs could induce significant changes in the physicochemical properties of chitosan, which may increase its biocompatibility and potential in wound management.  相似文献   

17.
It is important for gene carrier to transport DNA into target cells. Although viral vectors are very efficient gene-transfer vehicles, significant drawbacks limit their applications. Chitosan (CS) has been researched widely as a non-viral vector. However, the low cell specificity and low transfection efficiency of chitosan need to be overcome. In order to conquer the drawback of chitosan, the present paper is concerned with the synthesis of novel galactosylated chitosan (GC) through etherization of chitosan and galactose in THF using BF3·OEt2 as promoter. The final product was characterized and confirmed by FT-IR and 1H NMR. The degree of O-substitution (DS) of chitosan by galactose was measured to be 10.38% using anthrone-sulfuric acid colorimetric method. The mean particle diameter and average zeta potential of the GC/DNA complex were 350 nm and +22.1 mV, respectively. The GC/DNA nanoparticle was tested to transfect HEK293 cells, and the viability of HEK293 cells was not affected by the GC/DNA nanoparticle compared to that of the control.  相似文献   

18.
在氨水溶液中进行Fe+2和Fe+3离子共沉淀并水热处理后制得磁性纳米颗粒Fe3O4,通过戊二醛活化将纤维素酶固定于其上。采用基于响应面法的Box-Behnken法(BBD)优化了制备条件,如磁性纳米颗粒浓度、戊二醛浓度、酶浓度和交联时间。 BBD分析结果表明,用实验数据可合理调节二次模型。利用生成的基于统计数据的等高线评价了响应面的变化,以理解纳米颗粒和酶活性之间的关系。运用扫描电镜、X射线衍射和红外光谱表征了纳米颗粒上酶的尺寸、结构、形貌和结合情况。采用诸如pH值、温度、重复使用性和存储能力分析了固定化纤维素酶的活性和稳定性。发现固定后的纤维素酶表现出更好的稳定性和活性。  相似文献   

19.
This study explored the green synthesis and immobilization of colloidal silver nanoparticles (AgNPs) on a solid compatible support. Its antibacterial properties in reusable air filters are also discussed. The chitosan stabilized colloidal AgNPs (chi-AgNPs) were prepared using visible light irradiation in methanol. The UV–Vis, FTIR spectra, and TEM confirmed the chi-AgNPs formation. The immobilization technique of chi-AgNPs on the surface of white-silica-gel beads, which was previously coated chitosan (chi-SiG), was effective. The immobilized silver particles (AgNPs-[chi-SiG]) were solid, stable, dispersed, and nano-size. Both AgNPs-[chi-SiG] and chi-SiG exhibited antibacterial properties and prevented the growth of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in agar media. Air filter containing the AgNPs-[chi-SiG] showed high antibacterial activity against Bacillus subtilis in the air.  相似文献   

20.
Herein, polydopamine-coated Fe3O4 spheres were synthesized using a very simple, easy, cost-effective, efficient, and fast method. First, magnetic nanoparticles (Fe3O4) were synthesized and were followed by accommodating polydopamine on the surface of the prepared Fe3O4. The prepared polydopamine-coated Fe3O4 spheres were utilized as a sorbent in magnetic solid phase extraction of gemfibrozil and warfarin (as the model analytes). The extracted model analytes were desorbed by a suitable organic solvent and were analyzed by high-performance liquid chromatography. Under optimized condition, the linearity of the method was in the range of 0.1–200.0 μg/L for the selected analytes in water. The limits of detection were calculated to be in the range of 0.026–0.055 μg/L for warfarin and gemfibrozil, respectively. The limits of quantification were calculated to be in the range of 0.089–0.185 μg/L. The inter-day and intra-day relative standard deviations were determined to be in the range of 1.4%–3.3% in three concentrations in order to calculate the method precision. Furthermore, the enrichment factors were found to be 78 and 81 for warfarin and gemfibrozil, respectively. Moreover, the calculated absolute recoveries were between 78% and 81%. The obtained recoveries indicated that the method was useful and applicable in complicated real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号