首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ti-substituted LiMn2O4 (LiMn2−x Ti x O4, x=0, 0.15, 0.30, 0.45, 0.60, and 0.75) has been synthesized using solid-state reactions. Their crystal and electronic structures were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). XRD data suggested that the lattice parameters of LiMn2−x Ti x O4 increase due to the replacement of Mn by Ti ions. XPS results indicated that the substituted Ti ions were in +4 oxidation state; consequently, the normal oxidation state of Mn ions has been detected by measuring the binding energy splitting of Mn 3s states, which decreases with the content of substituted Ti. The valence band spectra suggested that the intensity of e g level of Mn 3d orbitals increased due to the increase of the Mn3+/Mn4+ ratio.  相似文献   

2.
The valence-band resonant photoemission spectra (RPES) of LiMn2O4 have been measured throughout the Mn3p absorption edge. Based on the RPES data, the contribution of Mn3d states to the valence band of LiMn2O4 has been described and, consequently, the detailed hybridization between O2p and Mn3d states in the valence-band was determined.  相似文献   

3.
《Solid State Ionics》2006,177(17-18):1483-1488
LiMn2O4 and LiM0.05Mn1.95O4 (M = Ni, Fe and Ti) were synthesized by using solid-state reactions and their surface stoichiometries were confirmed by XPS data. The crystal and electronic structures were investigated by using X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). XRD data suggested that LiM0.05Mn1.95O4 possesses nearly no any variations in lattice parameters compared with LiMn2O4 for slight substitution of Ni, Fe and Ti; the substituted Ni, Fe and Ti ions were located on the 16d octahedral sites in the spinel crystal lattice. The XPS results suggested that Fe and Ti ions were at + 3 and + 4 oxidation states, respectively; while Ni ions are mixed with + 2 and + 3 oxidation states. The normal oxidation state of Mn ions in the above four materials is almost the same and calculated as + 3.55 according to the splitting energies of Mn3s states.  相似文献   

4.
We have investigated segregation of copper at the surface of V2O5 films deposited onto Cu substrate by employing surface analysis techniques. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) confirmed that the Cu is segregated at the surface and its chemical state is Cu2O. According to secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS), the Cu concentration inside the deposited V2O5 layer is low. Ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling spectroscopy (STS) revealed the segregation alters the surface local density of states. Surface analysis of deposited samples in ultra high vacuum (UHV) condition verified that the segregation occurs during the deposition. We have extended kinetic tight binding Ising model (KTBIM) to explain the surface segregation during the deposition. Simulation data approve the possibility of surface segregation during room temperature deposition. These results point out that on pure Cu substrate, oxidation occurs during the segregation and low surface energy of Cu2O is the original cause of the segregation.  相似文献   

5.
Nanocrystalline TiO2 (anatase) films were prepared using either colloidal suspensions or a sol-gel route. The electronic structure of these films was analyzed using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Apart from pristine films, films containing defects introduced by annealing under ultra-high vacuum conditions or by ion bombardment were investigated. Generally, annealing in the temperature range up to 720 K results in no significant changes in the XPS and UPS spectra as compared to the pristine state, indicating that the amount of defect formation is too low to be observable by these techniques. On the other hand, ion irradiation causes the appearance of distinct defect states; these could be identified in agreement with previous data from photoemission studies on rutile and anatase single crystals. From UPS, a valence-band width of ∼4.6 eV was determined for the nanocrystalline anatase films.  相似文献   

6.
Amorphous La-doped Al2O3 (La: Al2O3) thin films are deposited on n-type (100) Si substrates by rf magnetron co-sputterlng. The composition of the deposited films is measured by energy dispersive x-ray spectroscopy: Capacitance-voltage measurement shows that the dielectric constant k of La-doped Al2O3 films ranges from 8.5 to 11.6 with the increasing La content, and the highest k value of 11.6 is obtained for the 20.14% La content film. In the structure of the Al/La:Al2O3/Si metal oxide semiconductor, the dominant conduction stems from the space- charge-limited current at different temperatures. In addition, the wavelength dependence of the transmittance is studied by ultraviolet spectroscopy and the band gap of all the deposited films is above 5.5eV. The results demonstrate that La-doped Al2O3 can meet the requirement of next-generation gate materials.  相似文献   

7.
YBa2Cu4O8/La0.67Ca0.33MnO3/YBa2Cu4O8(YBCO/LCMO/YBCO) trilayer films were prepared by magnetron facing-target sputtering. For the first time, the oscillatory behaviour of superconducting transition temperature Tc,ON with the thickness of LCMO (dL) has been observed. The strongest nonmonotonic information in the Tc,ON--dL curves appears clearly when dL is larger than the critical thickness dLCR. The metal--semiconductor transition temperature can only be detected at dL>dLCR. The dependence on the ferromagnetic spacer layer in YBCO/LCMO/YBCO systems suggests strongly the interplay of ferromagnetic and superconducting couplings.  相似文献   

8.
Combining two methods, coating and doping, to modify spinel LiMn2O4, is a novel approach we used to synthesize active material. First we coated the LiMn2O4 particles with the nickel oxide particles by means of homogenous precipitation, and then the nickel oxide-coated LiMn2O4 was calcined at 750 °C to form a LiNixMn2−xO4 shell on the surface of spinel LiMn2O4 particles. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and charge-discharge test were performed to characterize the spinel LiMn2O4 before and after modification. The experimental results indicated that a spinel LiMn2O4 core is surrounded by a LiNixMn2−xO4 shell. The resulting composite showed excellent electrochemical cycling performance with an average fading rate of 0.014% per cycle. This improved cycle stability is greatly attributed to the suppression of Jahn-Teller distortion on the surface of spinel LiMn2O4 particles during cycling.  相似文献   

9.
The dielectric properties of LiMn2O4, LiMn1.6Ti0.4O4 and LiMn1.5Ni0.5O4 powders, synthesized by sol-gel method, were determined by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectrum in a transmission electron microscope. From these data, the optical joint density of states (OJDS) was obtained by Kramers-Kronig analysis. Since maxima observed in the OJDS spectra are assigned to interband transitions above the Fermi level, these spectra can be interpreted on the basis of calculated density of states (DOS), carried out with the CASTEP code. Experimental and theoretical results are in good agreement.  相似文献   

10.
M. Ö  ztas  M. Bedir  Z. Ö  ztürk  D. Korkmaz  S. Sur 《中国物理快报》2006,23(6):1610-1012
In2S3 nanocrystalline films are prepared on glass substrates by the spray pyrolysis technique using indium chloride and thiourea as precursors. The deposition is carried out at 350°C on glass substrates. The films are then annealed for two hour at 200, 400, 600, and 800°C in O2 flow. This process allows the transformation of nanocrystal In2O3 films from In2S3 films and the reaction completes at 600°C. These results indicate that the In2O3 film prepared by this simple thermal oxidation method is a promising candidate for electro-optical and photovoltaic devices.  相似文献   

11.
In order to improve the cycle stability of spinel LiMn2O4 electrode at elevated temperature, the LiCoO2-coated and Co-doped LiMn2O4 film were prepared by an electrostatic spray deposition (ESD) technique. LiCoO2-coated LiMn2O4 film shows excellent cycling stability at 55 °C compared to pristine and Co-doped LiMn2O4 films. The samples were studied by X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The excellent performance of LiCoO2-coated LiMn2O4 film can be explained by suppression of Mn dissolution. On the other hand, the LiCoO2-layer on the LiMn2O4 surface allows a homogenous Li+ insertion/extraction during electrochemical cycles and improves its structure stability.  相似文献   

12.
A thin and homogeneous alumina film was prepared by deposition and oxidation of aluminum on a refractory Re(0 0 0 1) substrate under ultrahigh vacuum conditions. X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron-energy-loss spectroscopy (HREELS) demonstrate that the oxide film is long-range ordered, essentially stoichiometric and free from surface hydroxyl groups. The chemisorption and thermal decomposition of Mo(CO)6 on the Al2O3 film were investigated by means of XPS and UPS. Mo(CO)6 adsorbs molecularly on the oxide film at 100 K; however, thermal decomposition of the adsorbate occurs upon annealing at high temperatures. Consequently the metallic molybdenum clusters are deposited on the thin alumina film via complete decarbonylation of Mo(CO)6.  相似文献   

13.
高潭华  刘慧英  张鹏  吴顺情  杨勇  朱梓忠 《物理学报》2012,61(18):187306-187306
采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.  相似文献   

14.
The structural transition of bulk and uano-size Gd2O3:Eu are studied by high pressure energy disperse x-ray diffraction (XRD) and high pressure photoluminescence. Our results show that in spite of different size of Gd2O3 particles, the cubic structure turns into a possible hexagonal one above 13.4 GPa. When the pressure is released, the sample reverses to the monoclinic structure. No cubic structure presents in the released samples. That is to say, the compression and relaxation of the sample leads to the cubic Gd2O3:Eu then turns into the monoclinic one.  相似文献   

15.
Two batches of poly-crystalline lithium manganate were prepared by a fuel assisted solution combustion method. LiMn2O4(S) was prepared using starch as the fuel and LiMn2O4(P) was prepared using poly vinyl alcohol (PVA) as the fuel. XRD studies indicated a significant and consistent shift in the 2θ values of all the hkl peaks to higher values in LiMn2O4(P) compared to LiMn2O4(S) indicating a lattice contraction in the former. TG/DTA studies indicated a higher formation temperature (∼25 °C higher) for LiMn2O4(P). The higher formation temperature most likely promotes the oxidation of some Mn3+ to Mn4+ with a lower ionic radius causing a lattice contraction. This hypothesis is confirmed through XPS studies which indicated the presence of a higher fraction of Mn4+ in LiMn2O4(P) than that present in LiMn2O4(S). A crystal shape algorithm was used to generate the crystal habits of lithium manganate from their XRD data leading to an understanding on the exposed hkl planes in these materials. From the atomic arrangement on the exposed hkl planes it is predicted that LiMn2O4(P) would be less prone to manganese dissolution and hence would possess a higher cycle life when compared to LiMn2O4(S).  相似文献   

16.
Intense room-temperature near infrared (NIR) photoluminescence (980 nm and 1032 nm) is observed from Yb,Al co-implanted SiO2 films on silicon. The optical transitions occur between the ^2F5/2 and ^2F7/2 levels of Yb^3+ in SiO2. The additional Al-implantation into SiO2 films can effectively improve the concentration quenching effect of Yb^3+ in SiO2. Photoluminescence excitation spectroscopy shows that the NIR photoluminescence is due to the non-radiative energy transfer from Al-implantation-induced non-bridging oxygen hole defects in SiO2 to Yb^3+ in the Yb-related luminescent complexes. It is believed that the defect-mediated luminescence of rare-earth ions in SiO2 is very effective.  相似文献   

17.
Yb-doped TiO2 pastes with different Yb/TiO2 weight ratios are prepared in the sol-gel process to obtain dyesensitized solar cells (DSCs). The nanocrystalline size of Yb-TiO2 becomes smaller and the lattice parameters change. Lattice distortion is observed and dark current is detected. It is found that a part of Yb existing as insulating oxide Yb2O3 state acts as barrier layers at the electrode-electrolyte interface to suppress charge recombination. A Yb-doped TiO2 electrode applied in DSCs leads to a higher open-circuit voltage and a higher fill factor. How the Yb-doped TiO2 films affect the photovoltaic response of DSCs is discussed.  相似文献   

18.
The possible defect models of Y^3+:PbWO4 crystals are discussed by defect chemistry and the most possible substituting positions of the impurity Y^3+ ions are studied by using the general utility lattice program (GULP). The calculated results indicate that in the lightly doped Y^3+ :PWO crystal, the main compensating mechanism is [2Ypb^+ + VPb^2-], and in the heavily doped Y^3+ :PWO crystal, it will bring interstitial oxygen ions to compensate the positive electricity caused by YPb^+, forming defect clusters of [2Ypb^+ +Oi^2-] in the crystal. The electronic structures of Y3+ :PWO with different defect models are calculated using the DV-Xα method. It can be concluded from the electronic structures that, for lightly doped cases, the energy gap of the crystal would be broadened and the 420nm absorption band will be restricted; for heavily doped cases, because of the existence of interstitial oxygen ions, it can bring a new absorption band and reduce the radiation hardness of the crystal.  相似文献   

19.
Spinel LiMn2O4 active material with high capacity retention   总被引:1,自引:0,他引:1  
Xifei Li 《Applied Surface Science》2007,253(21):8592-8596
Heating the mixture of LiMn2O4 and NiO at 650 °C was employed to enhance the cyclability of spinel LiMn2O4. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses implied that a LiNixMn2−xO4 solid solution was formed on the surface of LiMn2O4 particles. And charge-discharge tests showed that the enhancement of the capacity retention of modified LiMn2O4 is significant, maintained 97.2% of the maximum capacity after 100 cycles at charge and discharge rate of C/2, while the pure one only 75.2%. The modified LiMn2O4 also results in a distinct improvement in rate capability, even at the rate of 12C. The improvement of electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion at the surface of spinel LiMn2O4 particles.  相似文献   

20.
The resistivity of the heavy-doped La1/3Ca2/3MnO3 (LCMO) is simulated using a random resistor network model, based on a phase separation scenario. The simulated results agree well with the reported experimental data, showing a transition from a charge-disordered (CDO) state embedded with a few ferromagnetic (FM) metallic clusters to a charge-ordered (CO) state, corresponding to the transition from a high-temperature paramagnetic (PM) insulating state to a low-temperature antiferromagnetic (AF) insulating state. Furthermore, we find that the number of AF/CO clusters increases with decreasing temperature, and the clusters start to connect to each other around 250K, which causes percolating in the system. The results further verify that phase separation plays a crucial role in the electrical conductivity of LCMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号