共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe the synthesis and dioxygen reactivity of diiron(II) tetracarboxylate complexes [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(N,N-Me(2)en)(2)] (2) and [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(N,N-Bn(2)en)(2)] (6), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate. These complexes were prepared as models for the diiron(II) center in the hydroxylase component of soluble methane monooxygenase (MMOH). Compound 6 reacts with dioxygen to afford PhCHO in approximately 60(5)% yield, following oxidative N-dealkylation of the pendant benzyl group on the diamine ligand. The diiron(III) complex [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(O(2)CAr(Tol))(3)(N-Bnen)(N,N-Bn(2)en)] (8) was isolated from the reaction mixture. The 4.2 K M?ssbauer spectrum of 8 displays a single quadrupole doublet with parameters delta = 0.48(2) mm s(-1) and Delta E(Q) = 0.61(2) mm s(-1). The [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core structure in 8 matches that of the fully oxidized form of MMOH. The conversion of 6 to 8 closely parallels the chemistry of MMOH in which an O(2)-derived oxygen atom is inserted into the C-H bond of methane. Several reaction pathways are considered to account for this novel chemical transformation, and these are compared with mechanistic frameworks previously developed for related cytochrome P450 and copper(I) dioxygen chemistry. 相似文献
3.
Geswindt TE Gerber WJ Rohwer HE Koch KR 《Dalton transactions (Cambridge, England : 2003)》2011,40(34):8581-8588
A kinetic study of [OsO(4)] reduction by aliphatic alcohols (MeOH and EtOH) was performed in a 2.0 M NaOH matrix at 298.1 K. The rate model that best fitted the UV-VIS data supports a one-step, two electron reduction of Os(VIII) (present as both the [Os(VIII)O(4)(OH)](-) and cis-[Os(VIII)O(4)(OH)(2)](2-) species in a ratio of 0.34:0.66) to form the trans-[Os(VI)O(2)(OH)(4)](2-) species. The formed trans-[Os(VI)O(2)(OH)(4)](2-) species subsequently reacts relatively rapidly with the cis-[Os(VIII)O(4)(OH)(2)](2-) complex anion to form a postulated [Os(VII)O(3)(OH)(3)](2-) species according to: cis-[Os(VIII)O(4)(OH)(2)](2-) + trans-[Os(VI)O(2)(OH)(4)](2-) (k+2) > (k-2) 2[Os(VII)O(3)(OH)(3)](2-). The calculated forward, k(+2), and reverse, k(-2), reaction rate constants of this comproportionation reaction are 620.9 ± 14.6 M(-1) s(-1) and 65.7 ± 1.2 M(-1) s(-1) respectively. Interestingly, it was found that the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion does not oxidize MeOH or EtOH. Furthermore, the reduction of Os(VIII) with MeOH or EtOH is first order with respect to the aliphatic alcohol concentration. In order to corroborate the formation of the [Os(VII)O(3)(OH)(3)](2-) species predicted with the rate model simulations, several Os(VIII)/Os(VI) mole fraction and mole ratio titrations were conducted in a 2.0 M NaOH matrix at 298.1 K under equilibrium conditions. These titrations confirmed that the cis-[Os(VIII)O(4)(OH)(2)](2-) and trans-[Os(VI)O(2)(OH)(4)](2-) species react in a 1:1 ratio with a calculated equilibrium constant, K(COM), of 9.3 ± 0.4. The ratio of rate constants k(+2) and k(-2) agrees quantitatively with K(COM), satisfying the principle of detailed balance. In addition, for the first time, the molar extinction coefficient spectrum of the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion is reported. 相似文献
4.
Density functional, multireference configuration interaction, and modified valence configuration interaction calculations are used to investigate the electronic structure and spin coupling of the dinuclear [Fe(2)(hpdta)(H(2)O)(3)Cl] complex (H(5)hpdta = Hydroxypropane-1,3-diamine-N,N,N',N'-tetraacetic acid). The density functional calculations give evidence of both, states with local high-spin iron centres and states with local low-spin iron centres, the relative energy of which strongly depends on the functional. The splitting of states due to the spin coupling between the high-spin iron centres varies by more than a factor of two for different functionals. In an attempt to study to what extent it is possible to undertake configuration interaction calculations on such binuclear compounds, multireference configuration interaction calculations are performed on a [Fe(2)(OH)(5)(H(2)O)(3)(NH(3))(2)Cl] model complex. The results show that, when correlating only the ten iron 3d orbitals and the four valence orbitals of the bridging OH group, the calculated splitting is still by a factor of about 3 smaller than the value for the splitting inferred from magnetic susceptibility measurements. Modified valence configuration interaction calculations are performed to approximately take into account the influence of orbital relaxation effects of all occupied orbitals in the excited configurations. The exchange splitting is significantly increased, but still smaller than the experimental value. 相似文献
5.
Haitao X Nengwu Z Ruyi Y Yonggang W Jianmin L 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2000,(11):2203-2206
The electronic absorption spectrum (diffuse reflection spectrum) of the crystal of [Cu6(bpy)10([mu-CO3)2(mu-OH)2](ClO4)6 . 4H2O has been measured. The experimental results are discussed quantitatively with ligand field theory and the radial wave function of non-free copper(II), and calculation values agree well with the experimental results. The d-d absorption spectrum of a novel hexanuclear copper(II) complex was explained satisfactorily. Especially, complexity of multinuclear crystal structures determined that of spectral behaviors. It provides significant to grope spectral nature from coordination structures. 相似文献
6.
The structure and spin-crossover magnetic behavior of [Fe(II)1(6)][BF(4)](2) (1 = isoxazole) and [Fe(II)1(6)][ClO(4)](2) have been studied. [Fe(II)1(6)][BF(4)](2) undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3, a = 17.4387(4) A, c = 7.6847(2) A] and at 130 K [space group P1, a = 17.0901(2) A, b = 16.7481(2) A, c = 7.5413(1) A, alpha = 90.5309(6) degrees, beta = 91.5231(6) degrees, gamma = 117.8195(8) degrees ] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 mu(B) is consistent with high-spin Fe(II). A plateau in mu(T) having a moment of 3.3 mu(B) centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe-N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [Fe(II)1(6)][ClO(4)](2) [space group P3, a = 17.5829(3) A, c = 7.8043(2) A, beta = 109.820 (3) degrees, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [Fe(II)1(6)][ClO(4)](2) slowly decomposes in solutions containing acetic anhydride to form [Fe(III)(3)O(OAc)(6)1(3)][ClO(4)] [space group I2, a = 10.1547(7) A, b = 16.5497(11) A, c = 10.3205(9) A, beta = 109.820 (3) degrees, T = 200 K]. The isosceles Fe(3) unit contains two Fe.Fe distances of 3.2844(1) A and a third Fe.Fe distance of 3.2857(1) A. The magnetic data can be fit to a trinuclear model with H = -2J(S(1)xS(2) + S(2)xS(3)) - 2J(13)(S(1)xS(3)), where J = -27.1 and J(13) = -32.5 cm(-1). 相似文献
7.
Wu R Jayasooriya UA Cannon RD 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2000,56(3):575-579
IR spectra are reported for the compounds [Fe3O(O2CC(CH3)3)6(py)3][FeCl4] and [Fe3O(O2CC(CH3)3)6(py)3]. Using isotopic substitution at the central oxygen atom, the assignments of the in-plane and out-of-plane vibrations of this atom are confirmed, and coupling is demonstrated between the in-plane modes v(as)(Fe3O) and carboxylate deformation modes rho(r)(C-CO2). 相似文献
8.
近年来,利用晶体工程方法设计裁剪和组装具有一维、二维、三维框架结构的固体化合物材料已成为材料科学和化学学科中最活跃的研究领域之一。研究表明在这些框架内镶嵌活性组分可得到新型功能材料,如磁性材料、非线性光学材料及新型催化剂等[1]。而叠氮根是一个多功能桥联配体,它能形成一维[2],二维[3],三维[4]等配合物,有关叠氮根的磁性研究也成为分子基铁磁体研究的一个重要方面[5]。本文报道了[Cu(AFO)2(N3)2](DMF)(H2O)(DMF=N,N 二甲基甲酰胺)配合物的合成和晶体结构,并进行了元素分析和红外光谱表征。1 实验部分1 1 试剂与… 相似文献
9.
10.
Boudalis AK Lalioti N Spyroulias GA Raptopoulou CP Terzis A Bousseksou A Tangoulis V Tuchagues JP Perlepes SP 《Inorganic chemistry》2002,41(24):6474-6487
The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. M?ssbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances. 相似文献
11.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068). 相似文献
12.
Bushiri MJ Nayar VU 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2002,58(5):899-909
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 x 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3- and H2O vibrations. Additional bands obtained in the region of v3 and v1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of v3 modes, since the BrO3- ion occupies a site of lower symmetry. The appearance v1 mode of BrO3- anion at a lower wavenumber (771 cm(-1)) is attributed to the attachment of hydrogen to the BrO3- anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 x 3H2O structure is confirmed. The lifting of degeneracy of v4 mode indicates that the symmetry of BrO3- anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77-523 K for various temperatures. A small structural rearrangement takes place in BrO3- ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3- ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal. 相似文献
13.
14.
15.
16.
A new μ3-O triiron(III) complex [Fe3O(OBz)6(CH3OH)3](NO3)(CH3OH)2 (HOBZ = benzoic acid) has been synthesized, its structure has been determined and variable temperature magnetic susceptility has also been measured. In the molecule, three iron atoms formed an equilateral triangle with μ3-O in center. The fitting to the magnetic susceptibility showed that an intramolecular antiferromagnetic exchange interaction occurred between iron atoms with J=-25.51 cm?1, and a weaker intermolecular autiferromagnetic exchange interaction occurred with zJ' = ?2.30 cm?1. 相似文献
17.
18.
The hydrothermal reaction of Ln(2)O(3) (Ln = Dy and Ho), Cu(OAc)(2).2H(2)O, and oxydiacetic acid in the approximate mole ratio of 1:3:8 resulted in the formation of two new members of the isostructural series of polymers formulated as [(Cu(3)Ln(2)(oda)(6)(H(2)O)(6)).12H(2)O](n), crystallizing in the hexagonal crystal system, space group P6/mcc (No. 192). Temperature-dependent magnetic susceptibilities and EPR spectra are reported for the heterometallic compounds Cu-Dy 1, Cu-Ho 2, Cu-Er 3, and Cu-Y 4. The results are discussed in terms of the structure of the compounds, the electronic properties of the lanthanide ions, and the exchange interactions between the magnetic ions. 相似文献
19.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop. 相似文献
20.
Damir A. Safin Maria G. Babashkina Michael Bolte Axel Klein 《Phosphorus, sulfur, and silicon and the related elements》2013,188(12):2426-2432
The reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with 2-methylaniline 2-MeC6H4NH2, 2,6-dimethylaniline 2,6-Me2C6H3NH2, or 2,4,6-trimethylaniline 2,4,6-Me3C6H2NH2 leads to the N-phosphorylated thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-MeC6H4?, HLI ; 2,6-Me2C6H3?, HLII ; 2,4,6-Me3C6H2?, HLIII ). Reaction of the potassium salts of HLI –III with Ni(II) in aqueous EtOH leads to [Ni(LI–III-N,S)2] ([NiLI–III 2 ]) chelate complexes. The compounds obtained were investigated by 1H, 31P{1H} NMR spectroscopy and microanalysis. The molecular structure of the thiourea HLIII was elucidated by single crystal X-ray diffraction analysis. Single crystal X-ray diffraction studies showed that HLIII forms both intra- and intermolecular hydrogen bonds, which in turn leads to the formation of polymeric chains. One of the intermolecular hydrogen bonds is of the type N?H…S. Moreover, the formation of intermolecular C?H…η6-phenyl interactions was established. Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file. 相似文献