首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrosynthesis of Rh(2)(dpf)(4)(R) where dpf is the N,N'-diphenylformamidinate anion and R = CH(3), C(2)H(5), C(3)H(7), C(4)H(9) or C(5)H(11) was carried out in THF containing 0.2 M tetra-n-butylammonium perchlorate (TBAP) and one of several alkyl iodides represented as RI. The initial step in the reaction involved a one-electron reduction of the Rh(2)(4+) unit in Rh(2)(dpf)(4) to its Rh(2)(3+) form followed by a homogeneous reaction involving electrogenerated [Rh(2)(dpf)(4)](-) and the alkyl iodide in solution to give Rh(2)(dpf)(4)(R). The homogeneously generated Rh(2)(5+) product was then immediately reduced by a second electron at the potential where [Rh(2)(dpf)(4)(R)](-) is generated, giving [Rh(2)(dpf)(4)(R)](-) which contains a Rh(2)(4+) center as a final product of an electrochemical ECE mechanism. The electrosynthesized [Rh(2)(dpf)(4)(CH(3))](-) derivative could be reoxidized to Rh(2)(dpf)(4)(CH(3)) on the reverse potential sweep and both forms of the CH(3) bonded derivative were in situ characterized by cyclic voltammetry combined with UV-visible and/or ESR spectroscopy. The reversible Rh(2)(4+/3+) process of Rh(2)(dpf)(4) is located at E(1/2) = -1.11 V in THF, 0.2 M TBAP while the electrogenerated Rh(2)(dpf)(4)(R) products are substantially easier to reduce, with E(p) values for the Rh(2)(5+/4+) couples ranging from -0.50 to -0.54 V vs. SCE depending upon the specific R group.  相似文献   

2.
The reaction of the anticancer active compound [Rh(2)(mu-O(2)CCH(3))(2)(bpy)(2)(CH(3)CN)(2)][BF(4)](2) (1) (bpy = 2,2'-bipyridine) with NaC(6)H(5)S under anaerobic conditions yields Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).CH(3)OH (2), which was characterized by UV-visible, IR, and (1)H NMR spectroscopies as well as single-crystal X-ray crystallography. Compound 2 crystallizes as dark red platelets in the monoclinic space group C2/c with cell parameters a = 20.398(4) A, b = 11.861(2) A, c = 17.417(4) A, beta = 108.98 degrees, V = 3984.9(14) A(3), Z = 4. The main structural features are the presence of a [Rh(2)](4+) core with a Rh-Rh distance of 2.549(2) A bridged by two benzene thiolate ligands in a butterfly-type arrangement. The axial positions of the [Rh(2)](4+) core are occupied by two terminal benzene thiolates. Cyclic voltammetric studies of 2 reveal that the compound exhibits an irreversible oxidation at +0.046 V in CH(3)CN, which is in accord with the fact that the compound readily oxidizes in the presence of O(2). The fact that this unusual dirhodium(II/II) thiolate compound is formed under these conditions is an important first step in understanding the metabolism of dirhodium anticancer active compounds with thiol-containing peptides and proteins.  相似文献   

3.
The reactions of [Rh(2)(DTolF)(2)(CH(3)CN)(6)][BF(4)](2) (1) (DTolF = N,N'-di-p-tolylformamidinate) with 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) proceed with substitution of CH(3)CN molecules to give products with the N-N ligands chelating in an equatorial-equatorial (eq-eq) fashion. Compound 1 reacts with 1 equiv of bpy to yield a mixture of [Rh(2)(DTolF)(2)(bpy)(CH(3)CN)(3)][BF(4)](2).(CH(3))(2)CO (2a) and [Rh(2)(DTolF)(2)(bpy)(CH(3)CN)(4)][BF(4)](2) (2b). Compound 2a crystallizes in the monoclinic space group P2(1)/n with a = 13.5856(2) A, b = 18.0402(2) A, c = 21.4791(3) A; alpha = 90 degrees, beta = 101.044(1) degrees, gamma = 90 degrees; V = 5167.27(12) A(3), Z = 4, R = 0.0531, and R(w) = 0.0948. Compound 2b crystallizes in the monoclinic space group P2(1)/n with a = 10.9339(2) A, b = 24.4858(1) A, c = 19.4874(3) A; alpha = 90 degrees, beta = 94.329(1) degrees, gamma = 90 degrees; V = 5202.38(13) A(3), Z = 4, R = 0.0459, and R(w) = 0.1140. The reaction of compound 1 with 2 equiv of bpy affords [Rh(2)(DTolF)(2)(bpy)(2)(CH(3)CN)][BF(4)](2) (3) which crystallizes in the monoclinic space group P2(1)/a with a = 19.4534(4) A, b = 13.8298(3) A, c = 19.8218(5) A; alpha = 90 degrees, beta = 109.189(1) degrees, gamma = 90 degrees; V = 5036.5(2) A(3), Z = 4, R = 0.0589, and R(w) = 0.0860. Compound 1 reacts with 1 equiv of phen to form [Rh(2)(DTolF)(2)(phen)(CH(3)CN)(3)][BF(4)](2).2C(2)H(5)OC(2)H(5) (4) which crystallizes in the triclinic space group P1macro with a = 12.6346(2) A, b = 13.5872(2) A, c = 19.0597(3) A; alpha = 71.948(1) degrees, beta = 73.631(1) degrees, gamma = 71.380(1) degrees; V = 2886.70(8) A(3), Z = 2, R = 0.0445, and R(w) = 0.1207. A notable feature of the cations in 2a, 3, and 4 is the presence of only one axial (ax) CH(3)CN ligand, a fact that can be attributed to the steric effect of the formamidinate bridging ligands. Compounds 2a, 2b, 3, and 4 were fully characterized by X-ray crystallography and (1)H NMR spectroscopy, whereas [Rh(2)(DTolF)(2)(phen)(2)(CH(3)CN)(2)][BF(4)](2) (5) was characterized by (1)H NMR spectroscopy.  相似文献   

4.
Substituent and isomer effects on the structural, spectroscopic, (UV-visible and ESR) and electrochemical properties of dirhodium(III,II) complexes containing four identical unsymmetrical bridging ligands are reported for seven related compounds of the type Rh(2)(L)(4)Cl where L = 2-(2-fluoroanilino)pyridinate (2-Fap), 2-(2,6-difluoroanilino)pyridinate (2,6-F(2)ap), 2-(2,4,6-trifluoroanilino)pyridinate (2,4,6-F(3)ap), or 2-(2,3,4,5,6-pentafluoroanilino)pyridinate (F(5)ap) anion. Rh(2)(2-Fap)(4)Cl exists only in a (4,0) isomeric conformation while Rh(2)(2,6-F(2)ap)(4)Cl, Rh(2)(2,4,6-F(3)ap)(4)Cl, and Rh(2)(F(5)ap)(4)Cl exist as both (4,0) and (3,1) isomers. It had earlier been demonstrated that Rh(2)(L)(4)Cl complexes can adopt different geometric conformations of the bridging ligands, but the current study provides the first example where two geometric isomers of Rh(2)(5+) complexes are obtained for one compound using the same synthetic procedure. The synthesis, structural, spectroscopic, and/or electrochemical properties of (3,1) Rh(2)(2,6-F(2)ap)(4)CN and (4,0) Rh(2)(2,4,6-F(3)ap)(4)(C triple bond C)(2)Si(CH(3))(3) are also reported and the data on these compounds is discussed in light of their parent complexes, (3,1) Rh(2)(2,6-F(2)ap)(4)Cl and (4,0) Rh(2)(2,4,6-F(3)ap)(4)Cl.  相似文献   

5.
The crystals of enantiopure SS-[cis-Rh2(Ph2C6H4)2(O2CC2F4CO2)]2((CH3)2CHCH2NH2)3(1) were obtained from the reaction of S-[cis-Rh2(Ph2C6H4)2(CH3CN)6]BF4(S-2) and(Et4N)2(O2CC2F4CO2) in CH2Cl2/CH3OH under the presence of sec-butyl amine.Compound 1 crystallizes in orthorhombic,space group P212121 with a = 16.880(5),b = 28.728(9),c = 20.475(6) ,V = 9929(5) 3,Z = 4,C95H96Cl5F8N3O8.50P4Rh4,Mr = 2280.52,Dc = 1.526 g/cm3,F(000) = 4608 and μ(MoKα) = 0.922 mm-1.The final R = 0.0488 and wR = 0.1164 for 17204 observed reflections with I > 2σ(I) and R = 0.0814 and wR = 0.1374 for all data with absolute structure parameter =-0.04(3).Compound 1 contains two inherently chiral S-[cis-Rh2(Ph2C6H4)2] moieties which are connected by two(O2CC2F4CO2) dicarboxylate ligands in the equatorial positions.One of the dirhodium units with Rh-Rh distance of 2.5445(8)  is further coordinated by a sec-butyl amine in each axial position.Another dirohdium unit has only one axial sec-butyl amine ligand,and its Rh-Rh distance is 2.5079(9) .  相似文献   

6.
The crystal structure of a new hybrid product comprised of two rigid building blocks, namely dirhodium(II) tetraacetate, [Rh(2)(O(2)CCH(3))(4)] (1), and 2,6-diselenaspiro[3.3]heptane, Se(2)C(5)H(8) (2), has been solved ab initio using laboratory source X-ray powder diffraction (XRPD) data. The rigid body refinement approach has been applied to assist in finding an adequate model and to reduce the number of the refined parameters. Complex [Rh(2)(O(2)CCH(3))(4).mu(2)-Se(2)C(5)H(8)-Se,Se'] (3) conforms to the triclinic unit cell with lattice parameters of a = 8.1357(4), b = 8.7736(4), and c = 15.2183(8) A, alpha = 77.417(3), beta = 88.837(3), and gamma = 69.276(4) degrees, V = 989.66(8) A(3), and Z = 2. The centrosymmetric P space group was selected for calculations. The final values of the reduced wR(p), R(p), and chi(2) were calculated at 0.0579, 0.0433, and 5.95, respectively. The structure of 3 is a one-dimensional zigzag polymer built on axial Rh...Se interactions at 2.632(6) A. The 2,6-diselenaspiro[3.3]heptane ligand acts as a bidentate linker bridging dirhodium units via both selenium atoms. The geometrical parameters of individual groups for rigid body refinement have been obtained from X-ray powder data for dirhodium(II) tetraacetate (1) and from single-crystal X-ray diffraction for diselenium molecule 2. The crystal structures of 1 and 2 are reported here for the first time. For 1 indexing based on XRPD data has resulted in the triclinic unit cell P with lattice parameters of a = 8.3392(7), b = 5.2216(5), and c = 7.5264(6) A, alpha = 95.547(10), beta = 78.101(6), and gamma = 104.714(13) degrees, V = 309.51(5) A(3), and Z = 1. The final values were wR(p) = 0.0452, R(p) = 0.0340, and chi(2) = 1.99. The 1D polymeric motif built on axial Rh.O interactions of the centrosymmetric dirhodium units has been confirmed for the solid-state structure of 1. Compound 2,6-diselenaspiro[3.3]heptane (2) conforms to the monoclinic space group P2(1)/c with the unit cell parameters of a = 5.9123(4), b = 19.6400(13), and c = 5.8877(4) A, beta = 108.5500(10) degrees, V = 648.15(8) A(3), and Z = 4.  相似文献   

7.
The "anti-crown" B-hexamethyl 9-mercuracarborand-3 (1) was shown to complex halide ions (I-, Br-, Cl-) in an eta(3)-sandwich fashion. Symmetry-allowed interactions of the filled halide ion p-orbitals and the corresponding empty mercury p-orbitals result in three equivalent p(Hg)-p(halide)-p(Hg) three-center two-electron bonds and a sandwich structure. The molecular structures of [Li.(H(2)O)(4)][1(2).I].2CH(3)CN, MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2), and PPN[1(2).Cl] were determined by single-crystal X-ray diffraction studies. Compound [Li.(H(2)O)(4)][1(2).I].2CH(3)CN crystallized in the triclinic space group P-1, a = 13.312(8) A, b = 13.983(9) A, c = 13.996(9) A, alpha = 61.16(2) degrees, beta = 82.34(2) degrees, gamma = 86.58(2) degrees, V = 4365(2) A(3), Z = 1, R = 0.063, and R(w) = 0.171. Compound MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2) crystallized in the monoclinic space group C2/c, a = 24.671(8) A, b = 17.576(6) A, c = 26.079(8) A, beta = 106.424(6) degrees, V = 10847(6) A(3), Z = 8, R = 0.0607, and R(w) = 0.1506. Compound PPN[1(2).Cl] crystallized in the monoclinic space group C2/m, a = 37.27(2) A, b = 29.25(1) A, c = 10.990(4) A, beta = 100.659(7) degrees, V = 11774(8) A(3), Z = 4, R = 0.0911, and R(w) = 0.2369.  相似文献   

8.
Reactions of a dinuclear metal complex in the form of dirhodium(II) tetra(trifluoroacetate), [Rh(2)(O(2)CCF(3))(4)] (1), with a number of strong N-donor ligands having functional groups rigidly oriented at different directing angles have been found to yield supramolecular architectures of differing complexity. All structures have been established by X-ray crystallography. From reaction of 1 with neutral tris(4'-pyridyl)methylsilane ligand, CH(3)Si(C(5)H(4)N)(3) (L1), a discrete pyramid-shaped hexanuclear complex [[Rh(2)(O(2)CCF(3))(4)](3)CH(3)Si(C(5)H(4)N)(3)(eta(1)-C(6)H(6))(3)].C(6)H(6) (2.C(6)H(6)) has been isolated from benzene. In 2 three molecules of 1 are strongly coordinated to one L1 ligand at only one axial position of each dirhodium unit at the Rh-N distances of 2.152(6) A. The second rhodium atom of each dimetal complex in 2 weakly coordinates a benzene molecule with an Rh-C distance of 2.69(2) A. A supramolecular complex of the composition [[Rh(2)(O(2)CCF(3))(4)](2)(C(6)H(5))(2)Si(C(5)H(4)N)(2)] (3) has been prepared by reacting the dinuclear units 1 with a potentially bidentate ligand, bis(4'-pyridyl)diphenylsilane, (C(6)H(5))(2)Si(C(5)H(4)N)(2) (L2), having two pyridyl groups rigidly oriented at 109 degrees. In 3, one L2 ligand coordinates two dirhodium molecules 1 through their axial positions with the Rh-N distance of 2.150(5) A. An interesting extended 2D layered motif is formed by additional contacts of open axial positions of dirhodium units with phenyl groups of the neighboring ligands at Rh-C distances which average to 2.88(1) A. A supramolecular compound of the composition [[Rh(2)(O(2)CCF(3))(4)](3)(HO)C(C(5)H(4)N)(3)(eta(1)-C(6)H(6))].(1)/(2)C(6)H(6) (4.(1)/(2)C(6)H(6)) has been formed when linear dirhodium units 1 were reacted with tris(4'-pyridyl)methanol (L3) having tetrahedral directing angles that average to 110 degrees. A building block in the solid structure of 4 is a hexanuclear molecule in which one L3 ligand binds three dimetal units of 1 through N atoms of pyridyl groups at the average Rh-N distance of 2.143(7) A. A unique extended pseudo-3D structure in 4 is created by additional Rh-O coordination bonds as well as by weak metal-arene interactions.  相似文献   

9.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

10.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.  相似文献   

11.
The reaction of AlH(3).NMe(3) with RCN proceeds with the evolution of trimethylamine and affords (HAINCH(2)R)(6) (R = Ph (1), p-MeC(6)H(4) (2), p-CF(3)C(6)H(4) (3)). Compounds 1 and 3 are characterized by single-crystal structural analysis. Compound 1 reacts with Me(3)SiBr as well as with PhC[triple bond]CH to give (XAINCH(2)Ph)(6) (X = Br (4), PhC[triple bond]C (5)). Structural data and other characterization data of compounds 4 and 5 show that all the hydridic hydrogen atoms in 1 have been replaced by bromine atoms and PhC[triple bond]C groups, respectively. Compounds 1-5 are potential precursors for the preparation of aluminum nitride. Crystals of 1 are rhombohedral, space group R3 macro, with a = 15.7457(13) A, b = 15.7457(13) A, c = 14.949(2) A, V = 3209.8(5) A(3), and Z = 3. Crystals of 3.(3)/(4)C(7)H(8) are triclinic, space group P1 macro, with a = 17.527(11) A, b = 18.894(12) A, c = 19.246(15) A, alpha = 96.11(7) degrees, beta = 102.23(4) degrees, gamma = 106.79(3) degrees, V = 5867(7) A(3), and Z = 4. Compound 4 crystallizes in the monoclinic space group P2(1)/c, with a = 14.175(4) A, b = 16.678(5) A, c = 10.731(3) A, beta = 106.82(2) degrees, V = 2428.6(11) A(3), and Z = 2. Compound 5. C(7)H(8) crystallizes in the monoclinic space group C2/c, with a = 25.842(5) A, b = 15.443(3) A, c = 20.699(4) A, beta = 105.88(3) degrees, V = 7945(3) A(3), and Z = 4.  相似文献   

12.
Amine-templated vanadium sulfates of the formula [HN(CH(2))(6)NH][(V(IV)O)(2)(OH)(2)(SO(4))(2)].H(2)O, I, [H(3)N(CH(2))(2)NH(3)][V(III)(OH)(SO(4))(2)].H(2)O, II, and [H(2)N(CH(2))(4)NH(2)][(V(IV)O)(H(2)O)(SO(4))(2)], III, have been prepared under hydrothermal conditions. These vanadium sulfates add to the new emerging family of organically templated metal sulfates. Compound I has a linear chain structure consisting of V(2)O(8) square-pyramid dimers connected by corner-sharing SO(4) tetrahedra, creating four-membered rings along the chain. Both II and III possess simple linear chain topologies formed by VO(6) octahedra and SO(4) tetrahedra, with II having the tancoite chain structure. Compound I crystallizes in the triclinic space group P1 (No. 2) with a = 7.4852(4) A, b = 9.5373(5) A, c = 11.9177(6) A, alpha = 77.22 degrees, beta = 76.47(2) degrees, gamma = 80.86 degrees, Z = 2. Compound II: monoclinic, space group P2(1)/c (No. 14), a = 6.942(2) A, b = 10.317(3) A, c = 15.102(6) A, beta = 90.64(4) degrees, Z = 4. Compound III: triclinic, space group P1 (No. 2) with a = 6.2558(10) A, b = 7.0663(14) A, c = 15.592(4) A, alpha = 90.46(2) degrees, beta = 90.47(2) degrees, gamma = 115.68(2) degrees, Z = 2. Magnetic susceptibility measurements reveal weak antiferromagnetic interactions in I and III and ferromagnetic interactions in II.  相似文献   

13.
Han B  Shao J  Ou Z  Phan TD  Shen J  Bear JL  Kadish KM 《Inorganic chemistry》2004,43(24):7741-7751
Two neutral diruthenium complexes and one anionic diruthenium complex, Ru2(dpf)4(NO), Ru2(dpf)4(NO)2, and [Ru2(dpf)4(NO)]-, where dpf is diphenylformamidinate anion, were synthesized and characterized as to their electrochemical and spectroscopic properties. Two of the compounds, Ru2(dpf)4(NO) and Ru2(dpf)4(NO)2, were also structurally characterized. Ru2(dpf)4(NO) undergoes reversible one-electron reductions under N2 at E1/2=0.06 and -1.24 V in CH2Cl2, 0.1 M TBABr. These processes are shifted to E1/2=0.18 and -0.78 V under CO due to the trans-coordination of a CO molecule which stabilizes the singly and doubly reduced forms of the metal-metal bonded complexes, thus leading to easier reductions. CO does not coordinate to Ru2(dpf)4(NO), but it does bind to the singly reduced species to generate [Ru2(dpf)4(NO)(CO)]- under a CO atmosphere in solution; characteristic NO and CO bands are seen for this compound at nuNO=1674 cm(-1) and nuCO=1954 cm(-1). Ru2(dpf)4(NO)2 displays a reversible one-electron reduction at E1/2=-1.24 V versus SCE and an irreversible reduction at Epc=-1.96 V in CH2Cl2, 0.1 M TBAP under N2. There are also two reversible one-electron oxidations at E1/2=0.24 and 1.15 V. Spectroelectrochemical monitoring of the Ru2(dpf)4(NO)2 oxidation processes in a thin-layer cell shows only a single NO vibration for each electrogenerated product and nuNO is located at 1726 (neutral), 1788 (singly oxidized), or 1834 (doubly oxidized) cm(-1). Finally, a labile CO complex, [Ru2(dpf)4(NO)(CO)]-, could be generated by passing CO into a solution of [Ru2(dpf)4(NO)]-. Formation of the mixed CO/NO adduct was confirmed by electrochemistry and infrared spectroscopy. Analysis of the NO and CO stretching vibration frequencies for [Ru2(dpf)4(NO)(CO)]- by in-situ FTIR spectroelectrochemistry and comparisons with data for Ru2(dpf)4(NO) and Ru2(dpf)4(CO) reveal the presence of a strong interaction between NO and CO across the Ru-Ru bond.  相似文献   

14.
A homologous series of dinuclear compounds with the bridging ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp) has been prepared and characterized by X-ray crystallographic and spectroscopic methods. [Mo(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x 3CH(3)CN (1) crystallizes in the monoclinic space group P2(1)/c with a = 15.134(5) A, b = 14.301(6) A, c = 19.990(6) A, beta = 108.06(2) degrees, V = 4113(3) A(3), and Z = 4. [Ru(2)(O(2)CCH(3))(2)(pynp)(2)][PF(6)](2) x 2CH(3)OH (2) crystallizes in the monoclinic space group C2/c with a = 14.2228(7) A, b = 20.3204(9) A, c = 14.1022(7) A, beta = 95.144(1) degrees, V = 4059.3(3) A(3), and Z = 4. [Rh(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x C(7)H(8) (3) crystallizes in the monoclinic space group C2/c with a = 13.409(2) A, b = 21.670(3) A, c = 13.726(2) A, beta = 94.865(2) degrees, V = 3973.9(8) A(3), and Z = 4. A minor product, [Rh(2)(O(2)CCH(3))(2)(pynp)(2)(CH(3)CN)(2)][BF(4)][PF(6)] x 2CH(3)CN (4), was isolated from the mother liquor after crystals of 3 had been harvested; this compound crystallizes in the triclinic space group, P1 with a = 12.535(3) A, b = 13.116(3) A, c = 13.785(3) A, alpha = 82.52(3) degrees, beta = 77.70(3) degrees, gamma = 85.76(3) degrees, V = 2193.0(8) A(3), and Z = 2. Compounds 1-3 constitute a convenient series for probing the influence of the electronic configuration on the extent of mixing of the M-M orbitals with the pi system of the pynp ligand. Single point energy calculations performed on 1-3 at the B3LYP level of theory lend insight into the bonding in these compounds and allow for correlations to be made with electronic spectral data. Although purely qualitative in nature, the values for normalized change in orbital energies (NCOE) of the frontier orbitals before and after reduction are in agreement with the observed differences in reduction potentials as determined by cyclic voltammetry.  相似文献   

15.
Two new dirhodium(II) catalysts of general formula Rh(2)(N-O)(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (N-O = C(4)H(4)NO(2)) are prepared, starting from Rh(2)(O(2)CCH(3))(2)(PC)(2)L(2) [PC = (C(6)H(4))P(C(6)H(5))(2) (head-to-tail arrangement); L = HO(2)CCH(3)]. The thermal reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with the neutral succinimide stereoselectively gives one compound that according to the X-ray structure determination has the formula Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (1). It corresponds to the polar isomer with two bridging imidate ligands in a head-to-head configuration. However, stepwise reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with (CH(3))(3)SiCl and potassium succinimidate yields a mixture of 1 and one of the two possible isomers (structure B) with a head-to-tail configuration of the imidate ligands, Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (2), also characterized by X-ray methods. In solution, compound 2 undergoes slow isomerization to 1; the rate of this process is enhanced by the presence of acetonitrile. Compounds 1 and 2 are obtained as pure enantiomers starting from (M)- and (P)-Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) rather than from the racemic mixture. Their enantioselectivities in cyclopropanation of 1-diazo-5-penten-2-one are similar to those reported for the dirhodium amidate catalysts.  相似文献   

16.
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 ? and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.  相似文献   

17.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

18.
Cationic Re(V) oxo compounds of the type [ReO(OSiMe3)(eta 2-B(pz)4)(L)2]X [X = Cl, L = 4-(NMe2)C5H4N (1), 1-Meimz (1-methylimidazole; 2), 1/2 dmpe (1,2-bis(dimethylphosphino)ethane; 3), py (4a); X = I, L = py (4b)] can be prepared by reacting trans-[ReO2(eta 2-B(pz)4)(L)2] with XSiMe3. In solution, cations 1-4 are reactive species, and those with unidentate nitrogen donor ligands (1, 2, and 4) rearrange into the neutral derivatives [ReO(Cl)(OSiMe3)(eta 2-B(pz)4)(L)] [L = py (5), 4-(NMe2)C5H4N (6), 1-Meimz (7)], which are also reported herein. Compounds 1-3 and 5-7 have been fully characterized by the usual spectroscopic techniques, which in some cases includes X-ray crystallographic analysis (3, 6, and 7). Compound 3 crystallizes from CH2Cl2/n-hexane as yellow crystals with one molecule of CH2Cl2 solvent, and compounds 6 and 7 crystallize from THF/n-hexane as violet and red crystals, respectively, with one molecule of THF solvent in the case of 6. Crystallographic data: 3, orthorhombic space group Pn2(1)a, a = 11.311(2) A, b = 19.135(2) A, c = 15.443(2) A, V = 3342.4(8) A3, Z = 4; 6, triclinic space group P1, a = 8.7179(11) A, b = 12.5724(8) A, c = 17.750(2) A, alpha = 70.454(7) degrees, beta = 77.935(9) degrees, gamma = 77.129(8) degrees, V = 1768.1(3) A3, Z = 2; 7, monoclinic space group P2(1)/c, a = 16.356(2) A, b = 20.384(3) A, c = 17.360(3) A, beta = 106.971(12) degrees, V = 5535.8(14) A3, Z = 8.  相似文献   

19.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

20.
The two-electron mixed-valence dirhodium complex Rh(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (tfepma = CH(3)N[P(OCH(2)CF(3))(2)](2)) reacts with HCl to furnish two isomeric dirhodium hydrido-chloride complexes, Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H. In the presence of HCl, the hydride complex effects the reduction of 0.5 equiv of O(2) to 1 equiv of H(2)O, generating Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4), which can be prepared independently by chlorine oxidation of the Rh(2)(0,II) precursor. The starting Rh(2)(0,II) complex is regenerated photochemically to close an oxygen-to-water reduction photocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号