首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to identify across-site patterns of modulation detection thresholds (MDTs) in subjects with cochlear implants and to determine if removal of sites with the poorest MDTs from speech processor programs would result in improved speech recognition. Five hundred millisecond trains of symmetric-biphasic pulses were modulated sinusoidally at 10 Hz and presented at a rate of 900 pps using monopolar stimulation. Subjects were asked to discriminate a modulated pulse train from an unmodulated pulse train for all electrodes in quiet and in the presence of an interleaved unmodulated masker presented on the adjacent site. Across-site patterns of masked MDTs were then used to construct two 10-channel MAPs such that one MAP consisted of sites with the best masked MDTs and the other MAP consisted of sites with the worst masked MDTs. Subjects' speech recognition skills were compared when they used these two different MAPs. Results showed that MDTs were variable across sites and were elevated in the presence of a masker by various amounts across sites. Better speech recognition was observed when the processor MAP consisted of sites with best masked MDTs, suggesting that temporal modulation sensitivity has important contributions to speech recognition with a cochlear implant.  相似文献   

2.
This study examined the sensitivity of four cochlear implant (CI) listeners to interaural time difference (ITD) in different portions of four-pulse sequences in lateralization discrimination. ITD was present either in all the pulses (referred to as condition Wave), the two middle pulses (Ongoing), the first pulse (Onset), the last pulse (Offset), or both the first and last pulse (Gating). All ITD conditions were tested at different pulse rates (100, 200, 400, and 800 pulses/s pps). Also, five normal hearing (NH) subjects were tested, listening to an acoustic simulation of CI stimulation. All CI and NH listeners were sensitive in condition Gating at all pulse rates for which they showed sensitivity in condition Wave. The sensitivity in condition Onset increased with the pulse rate for three CI listeners as well as for all NH listeners. The performance in condition Ongoing varied over the subjects. One CI listener showed sensitivity up to 800 pps, two up to 400 pps, and one at 100 pps only. The group of NH listeners showed sensitivity up to 200 pps. The result that CI listeners detect ITD from the middle pulses of short trains indicates the relevance of fine timing of stimulation pulses in lateralization and therefore in CI stimulation strategies.  相似文献   

3.
In modern cochlear implants, much of the information required for recognition of important sounds is conveyed by temporal modulation of the charge per phase in interleaved trains of electrical pulses. In this study, modulation detection thresholds (MDTs) were used to assess listeners' abilities to detect sinusoidal modulation of charge per phase at each available stimulation site in their 22-electrode implants. Fourteen subjects were tested. MDTs were found to be highly variable across stimulation sites in most listeners. The across-site patterns of MDTs differed considerably from subject to subject. The subject-specific patterns of across-site variability of MDTs suggest that peripheral site-specific characteristics, such as electrode placement and the number and condition of surviving neurons, play a primary role in determining modulation sensitivity. Across-site patterns of detection thresholds (T levels), maximum comfortable loudness levels (C levels) and dynamic ranges (DRs) were not consistently correlated with across-site patterns of MDTs within subjects, indicating that the mechanisms underlying across-site variation in these measures differed from those underlying across-site variation in MDTs. MDTs sampled from multiple sites in a listener's electrode array might be useful for diagnosing across-subject differences in speech recognition with cochlear implants and for guiding strategies to improve the individual's perception.  相似文献   

4.
Experiment 1 measured rate discrimination of electric pulse trains by bilateral cochlear implant (CI) users, for standard rates of 100, 200, and 300 pps. In the diotic condition the pulses were presented simultaneously to the two ears. Consistent with previous results with unilateral stimulation, performance deteriorated at higher standard rates. In the signal interval of each trial in the dichotic condition, the standard rate was presented to the left ear and the (higher) signal rate was presented to the right ear; the non-signal intervals were the same as in the diotic condition. Performance in the dichotic condition was better for some listeners than in the diotic condition for standard rates of 100 and 200 pps, but not at 300 pps. It is concluded that the deterioration in rate discrimination observed for CI users at high rates cannot be alleviated by the introduction of a binaural cue, and is unlikely to be limited solely by central pitch processes. Experiment 2 performed an analogous experiment in which 300-pps acoustic pulse trains were bandpass filtered (3900-5400 Hz) and presented in a noise background to normal-hearing listeners. Unlike the results of experiment 1, performance was superior in the dichotic than in the diotic condition.  相似文献   

5.
Sensitivity to binaural timing in bilateral cochlear implant users   总被引:2,自引:0,他引:2  
Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds.  相似文献   

6.
Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-micros inter-channel offset. When offsets were only 41 to 123 micros, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.  相似文献   

7.
Three experiments were performed to obtain vibrotactile sensitivity thresholds from hearing children and adults, and from deaf children. An adaptive two-interval forced-choice procedure was used to obtain estimates of the 70.7% point on the psychometric sensitivity curve. When hearing children of 5-6 and 9-10 years of age and adults were tested with sinusoids and haversine pulse stimuli, at 10, 100, 160, and 250 Hz or pps, respectively, only the 10-Hz stimulus resulted in an age effect. For this stimulus, young children were significantly less sensitive than adults. When sinusoids were again tested at 20, 40, 80, and 160 Hz, a small overall effect of age was observed with a significant effect only at 20 Hz. Two prelingually profoundly deaf children were tested with haversine pulse trains at 10, 50, 100, 160, and 250 pps. Both children were at least as sensitive to the tactile stimulation as were the hearing children and adults. Pulsatile stimulation, compared to sinusoidal stimulation, exhibited relatively flat threshold versus frequency functions. The present results, demonstrating no age effect for pulsatile stimulation and similar performance for deaf and hearing children, suggest that pulsatile stimulation would be appropriate in vibrotactile speech communication aids for the deaf.  相似文献   

8.
This study investigated the effect of five speech processing parameters, currently employed in cochlear implant processors, on speech understanding. Experiment 1 examined speech recognition as a function of stimulation rate in six Med-E1/CIS-Link cochlear implant listeners. Results showed that higher stimulation rates (2100 pulses/s) produced a significantly higher performance on word and consonant recognition than lower stimulation rates (<800 pulses/s). The effect of stimulation rate on consonant recognition was highly dependent on the vowel context. The largest benefit was noted for consonants in the /uCu/ and /iCi/ contexts, while the smallest benefit was noted for consonants in the /aCa/ context. This finding suggests that the /aCa/ consonant test, which is widely used today, is not sensitive enough to parametric variations of implant processors. Experiment 2 examined vowel and consonant recognition as a function of pulse width for low-rate (400 and 800 pps) implementations of the CIS strategy. For the 400-pps condition, wider pulse widths (208 micros/phase) produced significantly higher performance on consonant recognition than shorter pulse widths (40 micros/phase). Experiments 3-5 examined vowel and consonant recognition as a function of the filter overlap in the analysis filters, shape of the amplitude mapping function, and signal bandwidth. Results showed that the amount of filter overlap (ranging from -20 to -60 dB/oct) and the signal bandwidth (ranging from 6.7 to 9.9 kHz) had no effect on phoneme recognition. The shape of the amplitude mapping functions (ranging from strongly compressive to weakly compressive) had only a minor effect on performance, with the lowest performance obtained for nearly linear mapping functions. Of the five speech processing parameters examined in this study, the pulse rate and the pulse width had the largest (positive) effect on speech recognition. For a fixed pulse width, higher rates (2100 pps) of stimulation provided a significantly better performance on word recognition than lower rates (<800 pps) of stimulation. High performance was also achieved by jointly varying the pulse rate and pulse width. The above results indicate that audiologists can optimize the implant listener's performance either by increasing the pulse rate or by jointly varying the pulse rate and pulse width.  相似文献   

9.
Psychophysical studies were conducted on two multiple-channel cochlear implant patients to examine the nature of the hearing sensations produced by electrical stimulation of auditory nerve fibers using electrodes at different sites in the scala tympani (one electrode at a time). Both time-invariant stimuli, whose parameter values did not vary in time, and time-varying stimuli, specified by a linear variation in parameter values, were used. A sharpness ranking study using time-invariant signals suggested that the hearing sensations produced by different electrodes varied from dull to sharp in an apical to basal direction in the scala tympani. A categorization study showed that the hearing sensations produced by two adjacent electrodes (1.5 mm apart) were rarely confused for a restricted range of time-invariant pulse rates. Discriminability studies by a same-different procedure for stimuli with pulse rate below 250 pps showed: (1) relative difference limens of 6% to 12% for time-invariant pulse rates, and 9% and 13% for time-varying pulse rates; (2) stimuli with time-varying electrode position differing in the direction of electrode trajectory were readily discriminated; and (3) the discrimination of time-varying pulse rates deteriorated with decreases in the duration of the variation, while the discriminability of single-electrode trajectories was the same for the three durations: 25, 50, and 100 ms. A speech processing strategy was also proposed on the bases of these results.  相似文献   

10.
Loudness matches were obtained between unmodulated carriers and carriers that were amplitude modulated either periodically (rates between 2 and 32 Hz, modulation sinusoidal either on a linear amplitude scale or on a dB scale; the latter is called dB modulation) or with the envelope of the speech of a single talker. The carrier was a 4-kHz sinusoid, white noise, or speech-shaped noise. Both normally hearing subjects and subjects with cochlear hearing loss were tested. Results were expressed as the root-mean-square (rms) level of the modulated carrier minus the level of the unmodulated carrier at the point of equal loudness. If this difference is positive, this indicates that the modulated carrier has a higher rms level at the point of equal loudness. For normally hearing subjects, the results show: (1) For a 4000-Hz sinusoidal carrier, the difference was slightly positive (averaging about 0.7 dB). There was no significant effect of modulation rate or level over the range 20-80 dB SL. (2) For a speech-shaped noise or white noise carrier, the difference was close to zero, although for large modulation depths it tended to be negative. There was no clear effect of level (over the range 35-75 dB SPL) or modulation rate. For the hearing-impaired subjects, the differences were small, but tended to be slightly negative for both the 4000-Hz carrier and the noise carriers, when the modulation rate was above 2 Hz. Again, there was no clear effect of overall level. However, for dB modulation, the differences became more negative with increasing modulation depth. For modulation rates in the range 4-32 Hz, the results could be fitted reasonably well using the assumption that the loudness of modulated sounds is based on the rms value of the time-varying intensity of the response of the basilar membrane (taking into account the compression that occurs in the normal cochlea). The implications of the results for the fitting of multi-band compression hearing aids and for the design of loudness meters are discussed.  相似文献   

11.
The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were examined using the listeners' clinical sound processor. The general form of the TMTF was low-pass, consistent with previous studies. The operation of automatic gain control had no effect on MDTs when the stimuli were presented at 65 dBA. MDTs were not dependent on the presentation levels (ranging from 50 to 75 dBA) nor on the number of channels. Significant correlations were found between MDTs and speech recognition scores. The rates of decay of the TMTFs were predictive of speech recognition abilities. Spectral-ripple discrimination was evaluated to examine the relationship between temporal and spectral envelope sensitivities. No correlations were found between the two measures, and 56% of the variance in speech recognition was predicted jointly by the two tasks. The present study suggests that temporal modulation detection measured with the sound processor can serve as a useful measure of the ability of clinical sound processing strategies to deliver clinically pertinent temporal information.  相似文献   

12.
1 Introduction  Thegenerationofshortpulsetrainswithhighrepetitionratesisimportantformanyapplications,andactivelymode lockingfiberringlasersarepromisingsourcesofhighrepetitionratetransform limitedopticalpulses.Comparedwithactivelymock lockingsemiconducto…  相似文献   

13.
By applying a small frequency detuning to the RF modulation frequency, pulse trains with repetition rates of integer multiples of the RF modulation frequency have been obtained in an actively mode-locking fiber ring laser. Optical pulse trains with repetition rates of 20 GHz, 30 GHz and 40 GHz were generated respectively here. Furthermore, an interesting phenomenon of generation of pulse train with repetition rate half the modulation frequency was observed.  相似文献   

14.
The definitions of the carrier to envelope phase (CEP) and carrier to envelope offset (CEO) arc reviewed. It is pointed out that a unique separation of the field of an ultrashort pulse in a “carrier” and “envelope” is not always possible for ultrashort pulses. Another definition is proposed for pulses of a few optical cycles, that is not dependent on the notion of “carrier” and “envelope.” The carrier to envelope offset (CEO) is a frequency, generally defined as the ratio of the change in CEP between pulses, to the pulse (temporal) spacing. It is shown that the CEO exists for trains of long pulses, for which the CEP cannot be measured. Methods of measuring the CEO of a mode-locked laser are proposed. It is shown that MQW have a locking tendency on the CEO of two pulse trains.  相似文献   

15.
Many modern cochlear implants use sound processing strategies that stimulate the cochlea with modulated pulse trains. Rubinstein et al. [Hear. Res. 127, 108 (1999)] suggested that representation of the modulator in auditory nerve responses might be improved by the addition of a sustained, high-rate, desynchronizing pulse train (DPT). In addition, activity in response to the DPT may mimic the spontaneous activity (SA) in a healthy ear. The goals of this study were to compare responses of auditory nerve fibers in acutely deafened, anesthetized cats elicited by high-rate electric pulse trains delivered through an intracochlear electrode with SA, and to measure responses of these fibers to amplitude-modulated pulse trains superimposed upon a DPT. Responses to pulse trains showed variability from presentation to presentation, but differed from SA in the shape of the envelope of the interval histogram (IH) for pulse rates above 4.8 kpps (kilo pulses per second). These IHs had a prominent mode near 5 ms that was followed by a long tail. Responses to modulated biphasic pulse trains resembled responses to tones in intact ears for small (<10%) modulation depths, suggesting that acousticlike responses to sinusoidal stimuli might be obtained with a DPT. However, realistic responses were only observed over a narrow range of levels and modulation depths. Improved coding of complex stimulus waveforms may be achieved by signal processing strategies for cochlear implants that properly incorporate a DPT.  相似文献   

16.
A recent study reported that a group of Med-El COMBI 40+CI (cochlear implant) users could, in a forced-choice task, detect changes in the rate of a pulse train for rates higher than the 300 pps "upper limit" commonly reported in the literature [Kong, Y.-Y., et al. (2009). J. Acoust. Soc. Am. 125, 1649-1657]. The present study further investigated the upper limit of temporal pitch in the same group of CI users on three tasks [pitch ranking, rate discrimination, and multidimensional scaling (MDS)]. The patterns of results were consistent across the three tasks and all subjects could follow rate changes above 300 pps. Two subjects showed exceptional ability to follow temporal pitch change up to about 900 pps. Results from the MDS study indicated that, for the two listeners tested, changes in pulse rate over the range of 500-840 pps were perceived along a perceptual dimension that was orthogonal to the place of excitation. Some subjects showed a temporal pitch reversal at rates beyond their upper limit of pitch and some showed a reversal within a small range of rates below the upper limit. These results are discussed in relation to the possible neural bases for temporal pitch processing at high rates.  相似文献   

17.
Statistical properties of electrically stimulated (ES) and acoustically stimulated (AS) auditory nerve fiber responses were assessed in undeafened and short-term deafened cats, and a detection theory approach was used to determine fibers' abilities to signal intensity changes. ES responses differed from AS responses in several ways. Rate-level functions were an order of magnitude steeper, and discharge rate normally saturated at the stimulus pulse rate. Dynamic ranges were typically 1-4 dB for 200 pps signals, as compared with 15-30 dB for AS signals at CF, and they increased with pulse rate without improving threshold or changing absolute rate-level function slopes. For both ES and AS responses, variability of spike counts elicited by repeated trials increased with level in accord with Poisson-process predictions until the discharge rate exceeded 20-40 spikes/s. AS variability continued increasing monotonically at higher discharge rates, but more slowly. In contrast, maximum ES variability was usually attained at 100 spikes/s, and at higher discharge rates variability reached a plateau that was either maintained or decreased slightly until discharge rate approached the stimulus pulse rate. Variability then decreased to zero as each pulse elicited a spike. Increasing pulse rate did not substantially affect variability for rates up to 800 pps; rather, higher pulse rates simply extended the plateau region. Spike count variability was unusually high for some ES fibers. This was traced to response nonstationarities that stemmed from two sources, namely level-dependent fluctuations in excitability that occurred at 1-3 s intervals and, for responses to high-rate, high-intensity signals, fatigue that arose when fibers discharged at their maximum possible rates. Intensity discrimination performance was assessed using spike count as the decision variable in a simulated 2IFC task. Neurometric functions (percent correct versus intensity difference) were obtained at several levels of the standard (I), and the intensity difference (delta I) necessary for 70% correct responses was estimated. AS Weber fractions (10 log delta I/I) averaged +0.2 dB (delta IdB = 3.1 dB) for 50 ms tones at CF. ES Weber fractions averaged -12.8 dB (delta IdB = 0.23 dB) for 50 ms, 200 pps signals, and performance was approximately constant between 100 and 1000 pps. Intensity discrimination by single cells in ES conditions paralleled human psychophysical performance for similar signals. High ES sensitivity to intensity changes arose primarily from steeper rate-level functions and secondarily from reduced spike count variability.  相似文献   

18.
孟庆林  原猛  牟宏宇  陈友元  冯海泓 《物理学报》2012,61(16):164302-164302
通过心理物理实验探讨了包络调制率(<300 Hz)和纯音载波频率(<8 kHz)对听觉时间调制检测能力的影响. 测试信号为以纯音为载波的正弦幅度调制信号, 采用二选一强迫选择法和自适应调整步长的心理物理实验方法, 测试得到不同载波频率条件下的时间调制传递函数. 实验结果表明, 包络调制率和载波频率均会对听觉的时间调制检测能力产生影响. 当载波频率低于2 kHz时, 人耳的检测能力与调制率呈单调递增趋势;当载波频率高于3.5 kHz时, 检测能力也会受到调制率的显著影响, 但没有显著的单调变化趋势. 当调制率在10-100 Hz之间时, 检测能力不随载波频率明显变化;当调制率在150-300 Hz之间时, 调制检测能力随着载波频率上升而下降, 在载波频率达到3.5 kHz时, 调制检测能力不随载波频率显著改变.  相似文献   

19.
This paper is concerned with modulation and beat detection for sinusoidal carriers. In the first experiment, temporal modulation transfer functions (TMTFs) were measured for carrier frequencies between 1 and 10 kHz. Modulation rates covered the range from 10 Hz to about the rate equaling the critical bandwidth at the carrier frequency. In experiment 2, TMTFs for three carrier frequencies were obtained as a function of the carrier level. In the final experiment, thresholds for the detection of either the lower or the upper modulation sideband (beat detection) were measured for "carrier" frequencies of 5 and 10 kHz, using the same range of modulation rates as in experiment 1. The TMTFs for carrier frequencies of 2 kHz and higher remained flat up to a modulation rate of about 100-130 Hz and had similar values across carrier frequencies. For higher rates, modulation thresholds initially increased and then decreased rapidly, reflecting the subjects' ability to resolve the sidebands spectrally. Detection thresholds generally improved with increasing carrier level, but large variations in the exact level dependence were observed, across subjects as well as across carrier frequencies. For beat rates up to about 70 Hz (at 5 kHz) and 100 Hz (at 10 kHz), beat detection thresholds were the same for the upper and the lower sidebands and were about 6 dB higher than the level per sideband at the modulation-detection threshold. At higher rates the threshold for both sidebands increased, but the increase was larger for the lower sideband. This reflects an asymmetry in masking with more masking towards lower frequencies. Only at rates well beyond the maximum of the TMTF did detection for the lower sideband start to be better than that for the upper sideband. The asymmetry at intermediate frequency separations can be explained by assuming that detection always takes place in filters centered above the stimulus spectrum. The shape of the TMTF and the beat-detection data reflects a limitation in resolving fast amplitude variations, which must occur central to the inner-ear filtering. Its characteristic resembles that of a first-order low-pass filter with a cutoff frequency of about 150 Hz.  相似文献   

20.
A simple and stable technique of optical short pulse generation for soliton transmission based on external modulation is reviewe.By using nonlinearity of absorption characteristics of an electroabsorption modulator, ultra-short optical pulse trains having a shape close to sech2 shape can be generated just with sinusoidal modulation, without ultra-short driving pulses and ultra-broad bandwidth of the modulator. The pulse width and the repetition rate can be varied by changing the electrical driving conditions. Quasi-transform-limited optical pulseswith time-bandwidth product of 0.32 were successfully generated by the sinusoidally driven InGaAsP electroabsorption modulator with up to 20 GHz repetition rate. An application of a λ/4-shifted DFB laser-electroabsorption modulator integrated light source to a single-chip soliton source is also described. The high quality of the modulator-generator pulses has been proven by long-distance soliton transmission over 6400 km at 2.5 Gb/s using a recirculating fiber loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号