首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase relations in the CaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and differential thermal analyses, and the isothermal section at 600°C has been constructed. The formation of ternary compounds at the component ratios 1CaO: 1Bi2O3: 1B2O3 (CaBi2B2O7) and 1CaO: 1Bi2O3: 2B2O3 (CaBi2B4O10) has been established X-ray diffraction characteristics of these phases are presented.  相似文献   

2.
Ce2O3-K2O-P2O5 ternary system has been investigated by thermoanalytical methods (DTA, DSC), powder X-ray diffraction, XPS and IR spectroscopy. The existence of three double potassium-cerium(III) phosphates has been confirmed and a new binary phosphate K4Ce2P4O15 has been found. Phase diagram and isothermal section at room temperature of the system Ce2O3-K2O-P2O5 have been presented.  相似文献   

3.
The solid-phase interaction in the V2O5-Nb2O5-MoO3 system has been investigated, and the formation of a solid solution bounded by the compositions MoNb2V4O18 ? δ, Mo2NbV5O21 ? δ, Mo2Nb3V3O21 ? δ, and Mo4Nb9V9O57 ? δ has been found (δ is nonstoichiometry). In the V2O5?Nb2O5 system, the formation of three compounds is verified, namely, VNbO5 (tetragonal structure), VNb9O25, and V2Nb23O62.5. The first two compounds are isostructural and form a continuous solid solution with tetragonal symmetry. A new compound of the composition Mo3NbVO14 ? δ has been synthesized. This compound is isostructural to the Mo3Nb2O14 compound described in the literature and forms a tetragonal solid solution with it. The phase equilibria in the V2O5-Nb2O5-MoO3 system in the subsolidus region have been determined.  相似文献   

4.
Thermal properties of Co2FeV3O11 have been reinvestigated. It has been proved that this compound does not exhibit polymorphism. It melts incongruently at the temperature of 770±5°C and the phase with lyonsite type structure is the solid product of this melting. Phase relations in the whole subsolidus area of the CoO–V2O5–Fe2O3 system have been determined. The solidus area projection onto the component concentration triangle plane of this system has been constructed using the DTA and XRD methods. 15 subsidiary subsystems can be distinguished in this system.  相似文献   

5.
Phase relations in the Y2O3-Ga2O3 system were studied by the anneal-and-quench technique in air within 1000–2300°C, and a phase diagram was plotted. Three compounds were found to form: Y3GaO6, Y4Ga2O9, and Y3Ga5O12; the temperature and concentration bounds of stability were determined for these compounds. Indexing results for Y3GaO6 are given.  相似文献   

6.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

7.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

8.
The thermodynamics of vaporization in the Bi2O3-Fe2O3 quasibinary system was studied by high-temperature mass-spectrometry. The partial pressures of the constituents of a saturated vapor over the system at 1100 K were determined. Based on the experimental data, the following parameters were calculated: the activities of the components of the Bi2O3-Fe2O3 system condensed phase, the standard enthalpies of some heterogeneous reactions, and standard enthalpies of formation and enthalpies of formation for crystalline BiFeO3 and Bi2Fe4O9 from individual oxides. An optimal temperature for the solid-phase synthesis of bismuth ferrites from simple oxides is recommended.  相似文献   

9.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

10.
The cationic networks in the structures of the initial oxides and all binary and ternary compounds forming in the Ln2O3-GeO2-P2O5 systems have been studied. In the phase diagrams of the Nd2O3-GeO2-P2O5 and Er2O3-GeO2-P2O5 systems, the regions of the structural influence of individual compounds with topologically identical cationic networks—anisotropic (A), combined (C), and isotropic (I)—are united into common areas. The A: C: I area ratio is 1: 1: 1 in the neodymium system and 1.7: 1: 3.4 in the erbium system.  相似文献   

11.
Regularities of formation of complex aluminates with structure of P/RS intergrowth type phases in the Ln2O3–MO–Al2O3 systems (Ln = rare-earth element, M = Mg, Ca, Sr, Ba) have been considered. Systematization of the data on formation of complex compounds coexisting with one-layer phases in the Ln2O3–MO–Al2O3 systems and analysis of geometry criteria of LnMAlO4 stability is a promising approach to prediction of novel compounds with structure of Ruddlesden–Popper phase.  相似文献   

12.
Due to the high specific capacities and environmental benignity, lithium-sulfur (Li-S) batteries have shown fascinating potential to replace the currently dominant Li-ion batteries to power portable electronics and electric vehicles. However, the shuttling effect caused by the dissolution of polysulfides seriously degrades their electrochemical performance. In this paper, Mn2O3 microcubes are fabricated to serve as the sulfur host, on top of which Al2O3 layers of 2 nm in thickness are deposited via atomic layer deposition (ALD) to form Mn2O3/S (MOS) @Al2O3 composite electrodes. The MOS@Al2O3 electrode delivers an excellent initial capacity of 1012.1 mAh g?1 and a capacity retention of 78.6% after 200 cycles at 0.5 C, and its coulombic efficiency reaches nearly 99%, giving rise to much better performance than the neat MOS electrode. These findings demonstrate the double confinement effect of the composite electrode in that both the porous Mn2O3 structure and the atomic Al2O3 layer serve as the spacious host and the protection layer of sulfur active materials, respectively, for significantly improved electrochemical performance of the Li-S battery.  相似文献   

13.
Solid-phase interactions in the V2O5-Ta2O5-MoO3 system were studied. The formation of com- pounds TaVO5 and VTa9O25 in the V2O5-Ta2O5 binary system was verified. Tetragonal VTa9O25-base solid solutions of the general formula Ta5 + 4x V5 − 4x O25 (x = 0.25–1) and TaVO5-base solid solutions of the general formula Ta x Mo1 − x V2 − x O8 − 3x (x = 0.625–1) were found to form. Subsolidus phase equilibria in the V2O5-Ta2O5-MoO3 were determined.  相似文献   

14.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

15.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

16.
Phase equilibria in the La2S3-Bi2S3-La2O3 ternary system were studied by differential thermal, X-ray powder diffraction, and microstructure analyses. Phase diagrams of five vertical sections and a liquidus surface projection were plotted for the La2S3-Bi2S3-La2O3 system. The regions of primary crystallization of phases and coordinates of non- and monovariant equilibria were determined for the system.  相似文献   

17.
The results concerning the synthesis, structure and thermal properties of V2O5-MoO3-Ag2O samples in the vanadium rich region of ternary system are presented in the form of quasi-binary phase diagrams in which at constant V2O5/MoO3 molar ratios, equal 9:1, 7:3 and 1:1, the content of Ag2O was variable. A new ternary phase isostructural with NaVMoO6 has been detected in the investigated system.  相似文献   

18.
Summary The synthesis of new compounds based on the CeO2-PrO2-Nd2O3system, which can be used as pigments for colouring of ceramic glazes, is investigated in our laboratory. The optimum conditions for the syntheses of these compounds have been estimated. The methods of thermal analysis provided first information about the temperature region of the formation of the pigments investigated. The synthesis of these compounds was followed by thermal analysis using STA 449/C Jupiter (Netzsch, Germany).  相似文献   

19.
The Sm2S3-Sm2O3 phase diagram was studied by physicochemical methods of analysis from 800 K up to melting. Two oxysulfides are formed in the system: Sm10S14O with tetragonal crystal structure (space group I41/acd; unit cell parameters: a = 1.4860 nm, c = 1.9740 nm; microhardness: H = 4700 MPa; solid decomposition temperature: 1500 K) and Sm2O2S with hexagonal structure (space group P-3m1; a = 0.3893 nm, c = 0.6717 nm; H = 4500 MPa; congruent melting temperature: 2370 K). Within the extent of the Sm2O2S-based solid solution (61–70 mol % Sm2O3) at 1070 K, a singular point appears at the compound composition on property-composition curves. The eutectic coordinates: 23 mol % Sm2O3 and 1850 K; 80 mol % Sm2O3 and 2290 K.  相似文献   

20.
Transition metal catalysts have been considerably used for NH3 decomposition because of the potential application in COx-free H2 generation for fuel cells. However, most transition metal catalysts prepared via traditional synthetic approaches performed the inferior stability due to the agglomeration of active components. Here, we adopted an efficient method, aerosol-assisted self-assembly approach (AASA), to prepare the optimized cobalt-alumina (Co3O4-Al2O3) catalysts. The Co3O4-Al2O3 catalysts exhibited excellent catalytic performance in the NH3 decomposition reaction, which can reach 100% conversion at 600 °C and maintain stable for 72 h at a gaseous hourly space velocity (GHSV) of 18000 cm3 gcat?1 h?1. The catalysts were characterized by various techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption, temperature-programmed reduction by hydrogen (H2-TPR), ex-situ/in-situ Raman and ex-situ/in-situ X-ray diffraction (XRD) to obtain the information about the structure and property of the catalysts. H2-TPR and in-situ XRD results show that there is strong interaction between the cobalt and alumina species, which influences the redox properties of the catalysts. It is found that even a low content of alumina (10 at%) is able to stabilize the catalysts due to the adequate dispersion and rational interaction between different components, which ensures the high activity and superior stability of the cobalt-alumina catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号