首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crystallographic study and theoretical assessment of the Gd/Y site preferences in the Gd 5- x Y x Tt 4 ( Tt = Si, Ge) series prepared by high-temperature methods is presented. All structures for the Gd 5- x Y x Si 4 system belong to the orthorhombic, Gd 5Si 4-type (space group Pnma). For the Gd 5- x Y x Ge 4 system, phases with x < 3.6 and x >or= 4.4 adopt the orthorhombic, Sm 5Ge 4-type structure. For the composition range of 3.6 相似文献   

2.
Several new large polyoxotungstates have been synthesized by reaction of lanthanide cations with the well-known "As(4)W(40)" anion, [(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)](28-) (1). The heteropolyanions [(H(2)O)(11)Ln(III)(Ln(III)(2)OH)(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)](20)(-) (Ln = Ce, Nd, Sm, Gd) (2-4) (Ln(3)As(4)W(40)) and [M(m)()(H(2)O)(10)(Ln(III)(2)OH)(2)(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)]((18-m)(-)) (Ln = La, Ce, Gd and M = Ba, K, none) (5-7) (Ln(4)As(4)W(40)) have been isolated as alkali metal and ammonium salts, respectively, and characterized by single-crystal X-ray analysis, elemental analysis, and IR and (183)W-NMR spectroscopy. The X-ray analyses revealed interanionic W-O-Ln bonds between adjacent Ln(x)()As(4)W(40) units forming a "dimer" for x = 3 and chains for x = 4. Upon dissolving in water these bonds hydrolyze and the monomeric species form. The straightforward syntheses which require the use of concentrated NaCl solutions (1-4 M) and the addition of stoichiometric amounts of Ba(2+) or K(+) reemphasize the importance of the presence of appropriate countercations for the assembly of large polyoxometalate structures.  相似文献   

3.
A novel electron-poor Eu(6.5)Gd(0.5)Ge? compound adopts the Ca?Sn?-type structure (space group Pnma, Z = 4, a = 7.5943(5) ?, b = 22.905(1) ?, c = 8.3610(4) ?, and V = 1454.4(1) ?3). The compound can be seen as an intergrowth of the Gd?Si?-type (Pnma) R?Ge? (R = rare earth) and FeB-type (Pnma) RGe compounds. The phase analysis suggests that the Eu(7-x)Gd(x)Ge? series displays a narrow homogneity range of stabilizing the Ca?Sn? structure at x ≈ 0.5. The structural results illustrate the structural rigidity of the 2(∝)[R?X?] slabs (X = p-element) and a possibility for discovering new intermetallics by combining the 2(∝)[R?X?] slabs with other symmetry-approximate building blocks. Electronic structure analysis suggests that the stability and composition of Eu(6.5)Gd(0.5)Ge? represents a compromise between the valence electron concentration, bonding, and existence of the neighboring EuGe and (Eu,Gd)?Ge? phases.  相似文献   

4.
New quaternary intermetallic phases REMGa(3)Ge (1) (RE = Y, Sm, Tb, Gd, Er, Tm; M = Ni, Co) and RE(3)Ni(3)Ga(8)Ge(3) (2) (RE = Sm, Gd) were obtained from exploratory reactions involving rare-earth elements (RE), transition metal (M), Ge, and excess liquid Ga the reactive solvent. The crystal structures were solved with single-crystal X-ray and electron diffraction. The crystals of 1 and 2 are tetragonal. Single-crystal X-ray data: YNiGa(3)Ge, a = 4.1748(10) A, c = 23.710(8) A, V = 413.24(2) A(3), I4/mmm, Z = 4; Gd(3)Ni(3)Ga(8)Ge(3), a = 4.1809(18) A, c = 17.035(11) A, V = 297.8(3) A(3), P4/mmm, Z = 1. Both compounds feature square nets of Ga atoms. The distribution of Ga and Ge atoms in the REMGa(3)Ge was determined with neutron diffraction. The neutron experiments revealed that in 1 the Ge atoms are specifically located at the 4e crystallographic site, while Ga atoms are at 4d and 8g. The crystal structures of these compounds are related and could be derived from the consecutive stacking of disordered [MGa](2) puckered layers, monatomic RE-Ge planes and [MGa(4)Ge(2)] slabs. Complex superstructures with modulations occurring in the ab-plane and believed to be associated with the square nets of Ga atoms were found by electron diffraction. The magnetic measurements show antiferromagnetic ordering of the moments located on the RE atoms at low temperature, and Curie-Weiss behavior at higher temperatures with the values of mu(eff) close to those expected for RE(3+) free ions.  相似文献   

5.
X-band single-crystal and powder EPR data were collected in the temperature range 4.2-300 K and under hydrostatic pressure up to 500 MPa for [(C(6)H(5))(3)(n-propyl)P](2)Cu(2)Cl(6) (C(42)H(44)P(2)Cu(2)Cl(6)). The crystal and molecular structure have been determined from X-ray diffraction. The compound crystallizes in the monoclinic space group P2(1)/n (Z = 2) and have unit cell dimensions of a = 9.556(5) ?, b= 17.113(3) ?, c = 13.523(7) ?, and beta = 96.10(4) degrees. The structure consists of two controsymmetric Cu(2)Cl(6)(2)(-) dimers well separated by complex anions. EPR spectra are typical for the triplet S = 1 state of Cu(2)Cl(6)(2)(-) dimer with parameters g(x)() = 2.114(8), g(y)() = 2.095(8), g(z)() = 2.300(8), and D(x)() = 0.025(1) cm(-)(1), D(y)() = 0.057(1) cm(-)(1), and D(z)() = -0.082(1) cm(-)(1) at room temperature. The D tensor is dominated by a contribution from anisotropic exchange but the dipole-dipole Cu-Cu coupling is not much less. The anisotropic exchange integrals were estimated to be as follows: J(xy,x)()()2(-)(y)()()2(an) = -45 cm(-)(1), J(xy,xy)()(an) = +17 cm(-)(1), J(xy,yz)()(an) = +62 cm(-)(1). The D tensor components are strongly temperature dependent and linearly increase on cooling with an anomalous nonlinear behavior below 100 K. The D values increase linearly with pressure, but the effect is much smaller than the temperature effect. This suggests that the D vs T dependence is dynamical in origin. EPR data, a possible mechanism, and contributions to the observed dependences are discussed and compared to EPR results for similar compounds.  相似文献   

6.
Wang H  Wang F  Jones K  Miller GJ 《Inorganic chemistry》2011,50(24):12714-12723
A crystallographic study and theoretical analysis of the structural and La/Y site preferences in the La(5-x)Y(x)Si(4) (0 ≤ x ≤ 5) series prepared by high-temperature methods is presented. At room temperature, La-rich La(5-x)Y(x)Si(4) phases with x ≤ 3.0 exhibit the tetragonal Zr(5)Si(4)-type structure (space group P4(1)2(1)2, Z = 4, Pearson symbol tP36), which contains only Si-Si dimers. On the other hand, Y-rich phases with x = 4.0 and 4.5 adopt the orthorhombic Gd(5)Si(4)-type structure (space group Pnma, Z = 4, Pearson symbol oP36), also with Si-Si dimers, whereas Y(5)Si(4) forms the monoclinic Gd(5)Si(2)Ge(2) structure (space group P2(1)/c, Z = 4, Pearson symbol mP36), which exhibits 50% "broken" Si-Si dimers. Local and long-range structural relationships among the tetragonal, orthorhombic, and monoclinic structures are discussed. Refinements from single crystal X-ray diffraction studies of the three independent sites for La or Y atoms in the asymmetric unit reveal partial mixing of these elements, with clearly different preferences for these two elements. First-principles electronic structure calculations, used to investigate the La/Y site preferences and structural trends in the La(5-x)Y(x)Si(4) series, indicate that long- and short-range structural features are controlled largely by atomic sizes. La 5d and Y 4d orbitals, however, generate distinct, yet subtle effects on the electronic density of states curves, and influence characteristics of Si-Si bonding in these phases.  相似文献   

7.
()()Conventional (18)O isotopic labeling techniques have been used to measure the water exchange rates on the Rh(III) hydrolytic dimer [(H(2)O)(4)Rh(&mgr;-OH)(2)Rh(H(2)O)(4)](4+) at I = 1.0 M for 0.08 < [H(+)] < 0.8 M and temperatures between 308.1 and 323.1 K. Two distinct pathways of water exchange into the bulk solvent were observed (k(fast) and k(slow)) which are proposed to correspond to exchange of coordinated water at positions cis and trans to bridging hydroxide groups. This proposal is supported by (17)O NMR measurements which clearly showed that the two types of water ligands exchange at different rates and that the rates of exchange matched those from the (18)O labeling data. No evidence was found for the exchange of label in the bridging OH groups in either experiment. This contrasts with findings for the Cr(III) dimer. The dependence of both k(fast) and k(slow) on [H(+)] satisfied the expression k(obs) = (k(O)[H(+)](tot) +k(OH)K(a1))/([H(+)](tot) + K(a1)) which allows for the involvement of fully protonated and monodeprotonated Rh(III) dimer. The following rates and activation parameters were determined at 298 K. (i) For fully protonated dimer: k(fast) = 1.26 x 10(-)(6) s(-)(1) (DeltaH() = 119 +/- 4 kJ mol(-)(1) and DeltaS() = 41 +/- 12 J K(-)(1) mol(-)(1)) and k(slow) = 4.86 x 10(-)(7) s(-)(1) (DeltaH() = 64 +/- 9 kJ mol(-)(1) and DeltaS() = -150 +/- 30 J K(-)(1) mol(-)(1)). (ii) For monodeprotonated dimer: k(fast) = 3.44 x 10(-)(6) s(-)(1) (DeltaH() = 146 +/- 4 kJ mol(-)(1) and DeltaS() = 140 +/- 11 J K(-)(1) mol(-)(1)) and k(slow) = 2.68 x 10(-)(6) s(-)(1) (DeltaH() = 102 +/- 3 kJ mol(-)(1) and DeltaS() = -9 +/- 11 J K(-)(1) mol(-)(1)). Deprotonation of the Rh(III) dimer was found to labilize the primary coordination sphere of the metal ions and thus increase the rate of water exchange at positions cis and trans to bridging hydroxides but not to the same extent as for the Cr(III) dimer. Activation parameters and mechanisms for ligand substitution processes on the Rh(III) dimer are discussed and compared to those for other trivalent metal ions and in particular the Cr(III) dimer.  相似文献   

8.
The formation and structural characteristics of Ru species applied as a cocatalyst on (Ga(1)(-)(x)()Zn(x)())(N(1)(-)(x)()O(x)()) are examined by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. RuO(2) is an effective cocatalyst that enhances the activity of (Ga(1)(-)(x)()Zn(x)())(N(1)(-)(x)()O(x)()) for overall water splitting under visible-light irradiation. The highest photocatalytic activity is obtained for a sample loaded with 5.0 wt % RuO(2) from an Ru(3)(CO)(12) precursor followed by calcination at 623 K. Calcination is shown to cause the decomposition of initial Ru(3)(CO)(12) on the (Ga(1)(-)(x)()Zn(x)())(N(1)(-)(x)()O(x)()) surface (373 K) to form Ru(IV) species (423 K). Amorphous RuO(2) nanoclusters are then formed by an agglomeration of finer particles (523 K), and the nanoclusters finally crystallize (623 K) to provide the highest catalytic activity. The enhancement of catalytic activity by Ru loading from Ru(3)(CO)(12) is thus shown to be dependent on the formation of crystalline RuO(2) nanoparticles with optimal size and coverage.  相似文献   

9.
A planar complex, [Rh(bpy)(2)](+) (bpy = 2,2'-bipyridine), was obtained from [Rh(ox)(bpy)(2)](+) (ox = oxalato) by photoirradiation. A rate constant k for the photoreaction was evaluated as 1 x 10(8) s(-1) in simple first-order kinetics, whereas a ligand dissociation, a reorganization of the coordinated bpy, and a two-electron transfer were involved in the reaction. The process of the Rh(I) complex generation was investigated in terms of a discrete variational (DV)-Xalpha molecular orbital calculation on [Rh(ox)(HN=CHCH=NH)(2)](+) instead of [Rh(ox)(bpy)(2)](+). From the calculation, using the transition-state method, it was predicted that a transition of the ox pi orbital to the metal 4d(z)()2 orbital caused the ligand dissociation and the reorganization of the coordinated bpy occurred in the ox pi to Rh 4d(x)()2(-y)2 excited state stabilized by the ox elimination. Upon release of the ligand and a change from octahedral to square-planar geometry, the electron density on the metal increased and the Rh 4d orbital acquired a d(8) electronic configuration.  相似文献   

10.
The ternary rare-earth gallium antimonides, REGaSb(2) (RE = La--Nd, Sm), have been synthesized through reaction of the elements. The structures of SmGaSb(2) (orthorhombic, space group D(5)(2)-C222(1), Z = 4, a = 4.3087(5) A, b = 22.093(4) A, c = 4.3319(4) A) and NdGaSb(2) (tetragonal, space group D(19)(4h)-I4(1)/amd, Z = 8, a = 4.3486(3) A, c = 44.579(8) A) have been determined by single-crystal X-ray diffraction. The SmGaSb(2)-type structure is adopted for RE = La and Sm, whereas the NdGaSb(2)-type structure is adopted for RE = Ce--Nd. The layered SmGaSb(2) and NdGaSb(2) structures are stacking variants of each other. In both structures, two-dimensional layers of composition (2)(infinity)[GaSb] are separated from square nets of Sb atoms [Sb] by RE atoms. Alternatively, the structures may be considered as resulting from the insertion of zigzag Ga chains between (2)(infinity)[RE Sb(2)] slabs. In SmGaSb(2), all of the Ga chains are parallel and the (2)(infinity)[SmSb(2)] layers are stacked in a ZrSi(2)-type arrangement. In NdGaSb(2), the Ga chains alternate in direction, resulting in a doubling of the long axis relative to SmGaSb(2), and the (2)(infinity)[NdSb(2)] layers are stacked in a Zr(3)Al(4)Si(5)-type arrangement. Extended Hückel band structure calculations are used to explain the bonding in the [GaSb(2)](3-) substructure.  相似文献   

11.
The gallium aryloxide polymer, [[((t)Bu)(2)Ga](2)(mu-OC(6)H(4)O)](n)(1) is synthesized by the addition of Ga((t)()Bu)(3) with hydroquinone in a noncoordinating solvent, and reacts with pyridines to yield the yellow compound [((t)()Bu)(2)Ga(L)](2)(mu-OC(6)H(4)O) [L = py (2), 4-Mepy (3), and 3,5-Me(2)py (4)] via cleavage of the Ga(2)O(2) dimeric core. The analogous formation of Ga((t)()Bu)(2)(OPh)(py) (5) occurs by dissolution of [((t)Bu)(2)Ga(mu-OPh)](2) in pyridine. In solution, 2-4 undergo dissociation of one of the pyridine ligands to yield [((t)()Bu)(2)Ga(L)(mu-OC(6)H(4)O)Ga((t)Bu)(2)](2), for which the DeltaH and DeltaS have been determined. Thermolysis of compounds 2-4 in the solid-state results in the loss of the Lewis base and the formation of 1. The reaction of 1 or [((t)Bu)(2)Ga(mu-OPh)](2) with the vapor of the appropriate ligand results in the solid state formation of 2-4 or 5, respectively. The deltaH and deltaS for both ligand dissociation and association for the solid-vapor reactions have been determined. The interconversion of 1 into 2-4, as well as [((t)Bu)(2)Ga(mu-OPh)](2) into 5, and their reverse reactions, have been followed by (13)C CPMAS NMR spectroscopy, TG/DTA, SEM, EDX, and powder XRD. Insight into this solid-state polycondensation polymerization reaction may be gained from the single-crystal X-ray crystallographic packing diagrams of 2-5. The crystal packing for compounds 2, 3, and 5 involve a head-to-head arrangement that is maintained through repeated ligand dissociation and association cycles. In contrast, when compound 4 is crystallized from solution a head-to-tail packing arrangement is formed, but during reintroduction of 3,5-Me(2)py in the solid state-vapor reaction of compound 1, a head-to-head polymorph is postulated to account for the alteration in the deltaH of subsequent ligand dissociation reactions. Thus, the deltaH for the condensation polymerization reaction is dependent on the crystal packing; however, the subsequent reversibility of the reaction is dependent on the polymorph.  相似文献   

12.
The new tetragonal phases La(3)In(4)Ge and La(3)InGe are obtained from high-temperature reactions of the elements in welded Ta followed by annealing. The structures of both were established by single-crystal X-ray diffraction in tetragonal space group I4/mcm (Z = 4 and 16, a = 8.5165(3) and 12.3083(2) ?, c = 11.9024(4) and 16.0776(4) ?, respectively). La(3)In(4)Ge contains layers or slabs of three-connected indium built of puckered 8-rings and 4-rings, or of squashed tetrahedra ("butterflies") interlinked at all vertices, and these are separated by layers of La and isolated Ge. The phase is deficient of being a Zintl phase by three electrons per formula unit and is better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic behavior for the In slabs. The more complex La(3)InGe, isostructural with Gd(3)Ga(2), is also layered. This phase contains pairs of mixed-occupancy (0.75 In, 0.25 Ge) sites separated by 3.020 ?, as well as isolated In and Ge atoms. The former appear to be fully reduced closed-shell atoms (relative to the bonded Ga dimers in Gd(3)Ga(2)) that are held in somewhat close proximity by cation matrix effects. The compound appears to be semiconducting and thus is a classical Zintl phase, (La(+3))(3)In(-5)Ge(-4) in the simplest oxidation state notation. High Coulomb energies are presumably important for the nature of the bonding and the stabilities of both compounds.  相似文献   

13.
The reaction of [UI(3)(THF)(4)] with 1 equiv of KTp()i(Pr)()2 in toluene in the presence of several neutral coligands allowed the synthesis of a novel family of mono-Tp()i(Pr)()2 complexes, [UI(2)Tp()i(Pr)()2(L)(x)()] [L = OPPh(3), x = 1 (3); L = C(5)H(5)N, x = 2 (4); L = Hpz()t(Bu,Me), x = 2 (5); and L = bipy, x = 1 (6)]. The adduct with THF, [UI(2)Tp()i(Pr)()2(THF)(2)(-)(3)] (1), could also be isolated by reacting [UI(3)(THF)(4)] with 1 equiv of KTp()i(Pr)()2 in tetrahydrofuran. However, complex 1 is not a good starting material to enter into the mono-Tp()i(Pr)()2 U(III) complexes as it decomposes in solution, leading to mixtures of U(III) species coordinated with Hpz()i(Pr)()2. The solid-state structures of 3, 4, and 6 were determined by single-crystal X-ray diffraction and revealed that this family of mono-Tp()i(Pr)()2 complexes can be six- (3) or seven-coordinated (4 and 6), depending on the nature of the neutral coligand. Complex 3 displays distorted octahedral coordination geometry, while 4 and 6 display distorted pentagonal bipyramid and capped octahedral geometries, respectively. Complexes 3 and 6 are static in solution, and the patterns of the (1)H NMR spectra are consistent with the C(s)() symmetry found in the solid state. The other complexes (1, 4, and 5) are fluxional, but the dynamic processes involved can be slowed by decreasing the temperature.  相似文献   

14.
The reaction between 1.5 equiv of elemental iodine and rare earth metals in powder form in THF at room temperature gives the rare earth triiodides LnI(3)(THF)(n)() in good yields. Purification by Soxhlet extraction of the crude solids with THF reliably gives the THF adducts LnI(3)(THF)(4) [Ln = La, Pr] and LnI(3)(THF)(3.5) [Ln = Nd, Sm, Gd, Dy, Er, Tm, Y] as microcrystalline solids. X-ray crystallography reveals that the early, larger lanthanide iodide PrI(3)(THF)(4) crystallizes as discrete molecules having a pentagonal bipyramidal structure, whereas the later, smaller lanthanide iodides LnI(3)(THF)(3.5) [Ln = Nd, Gd, Y] crystallize as solvent-separated ion pairs [LnI(2)(THF)(5)][LnI(4)(THF)(2)] in which the cations adopt a pentagonal bipyramidal geometry and the anions adopt an octahedral geometry in the solid state.  相似文献   

15.
The ligands 4-7-H(2) were used in coordination studies with titanium(IV) and gallium(III) ions to obtain dimeric complexes Li(4)[(4-7)(6)Ti(2)] and Li(6)[(4/5a)(6)Ga(2)]. The X-ray crystal structures of Li(4)[(4)(6)Ti(2)], Li(4)[(5b)(6)Ti(2)], and Li(4)[(7a)(6)Ti(2)] could be obtained. While these complexes are triply lithium-bridged dimers in the solid state, a monomer/dimer equilibrium is observed in solution by NMR spectroscopy and ESI FT-ICR MS. The stability of the dimer is enhanced by high negative charges (Ti(IV) versus Ga(III)) of the monomers, when the carbonyl units are good donors (aldehydes versus ketones and esters), when the solvent does not efficiently solvate the bridging lithium ions (DMSO versus acetone), and when sterical hindrance is minimized (methyl versus primary and secondary carbon substituents). The dimer is thermodynamically favored by enthalpy as well as entropy. ESI FT-ICR mass spectrometry provides detailed insight into the mechanisms with which monomeric triscatecholate complexes as well as single catechol ligands exchange in the dimers. Tandem mass spectrometric experiments in the gas phase show the dimers to decompose either in a symmetric (Ti) or in an unsymmetric (Ga) fashion when collisionally activated. The differences between the Ti and Ga complexes can be attributed to different electronic properties and a charge-controlled reactivity of the ions in the gas phase. The complexes represent an excellent example for hierarchical self-assembly, in which two different noncovalent interactions of well balanced strengths bring together eleven individual components into one well-defined aggregate.  相似文献   

16.
The reaction of [(3,5-Me(2)-C(5)H(3)N)(2)Zn(ESiMe(3))(2)] (E = Se, Te) with cadmium(II) acetate in the presence of PhESiMe(3) and P(n)Pr(3) at low temperature leads to the formation of single crystals of the ternary nanoclusters [Zn(x)()Cd(10)(-)(x)()E(4)-(EPh)(12)(P(n)()Pr(3))(4)] [E = Se, x = 1.8 (2a), 2.6 (2b); Te, x = 1.8 (3a), 2.6 (3b)] in good yield. The clusters [Zn(3)Hg(7)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (4) and [Cd(3.7)Hg(6.3)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (5) can be accessed by similar reactions involving [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SeSiMe(3))(2)] or [(N,N'-tmeda)Cd(SeSiMe(3))(2)] (1) and mercury(II) chloride. The metal silylchalcogenolate reagents are efficient delivery sources of {ME(2)} in cluster synthesis, and thus, the metal ion content of these clusters can be readily moderated by controlling the reaction stoichiometry. The reaction of cadmium acetate with [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SSiMe(3))(2)], PhSSiMe(3), and P(n)()Pr(3) affords the larger nanocluster [Zn(2.3)Cd(14.7)S(4)(SPh)(26)(P(n)()Pr(3))(2)] (6). The incorporation of Zn(II) into {Cd(10)E} (E = Se, Te) and Zn(II) or Cd(II) into {Hg(10)Se} nanoclusters results in a significant blue shift in the energy of the first "excitonic" transition. Solid-state thermolysis of complexes 2 and 3 reveals that these clusters can be used as single-source precursors to bulk ternary Zn(x)Cd(1)(-)(x)E materials as well as larger intermediate clusters and that the metal ion ratio is retained during these reactions.  相似文献   

17.
Addition of the new phosphonium carborane salts [HPR(3)][closo-CB(11)H(6)X(6)] (R = (i)Pr, Cy, Cyp; X = H 1a-c, X = Br 2a-c; Cy = C(6)H(11), Cyp = C(5)H(9)) to [Rh(nbd)(mu-OMe)](2) under a H(2) atmosphere gives the complexes Rh(PR(3))H(2)(closo-CB(11)H(12)) 3 (R = (i)Pr 3a, Cy 3b, Cyp 3c) and Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4 (R = (i)Pr 4a, Cy 4b, Cyp 4c). These complexes have been characterised spectroscopically, and for 4b by single crystal X-ray crystallography. These data show that the {Rh(PR(3))H(2)}(+) fragment is interacting with the lower hemisphere of the [closo-CB(11)H(6)X(6)](-) anion on the NMR timescale, through three Rh-H-B or Rh-Br interactions for complexes 3 and 4 respectively. The metal fragment is fluxional over the lower surface of the cage anion, and mechanisms for this process are discussed. Complexes 3a-c are only stable under an atmosphere of H(2). Removing this, or placing under a vacuum, results in H(2) loss and the formation of the dimer species Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a (R = (i)Pr), 5b (R = Cy), 5c (R = Cyp). These dimers have been characterised spectroscopically and for 5b by X-ray diffraction. The solid state structure shows a dimer with two closely associated carborane monoanions surrounding a [Rh(2)(PCy(3))(2)](2+) core. One carborane interacts with the metal core through three Rh-H-B bonds, while the other interacts through two Rh-H-B bonds and a direct Rh-B link. The electronic structure of this molecule is best described as having a dative Rh(I) --> Rh(III), d(8)--> d(6), interaction and a formal electron count of 16 and 18 electrons for the two rhodium centres respectively. Addition of H(2) to complexes 5a-c regenerate 3a-c. Addition of alkene (ethene or 1-hexene) to 5a-c or 3a-c results in dehydrogenative borylation, with 1, 2, and 3-B-vinyl substituted cages observed by ESI-MS: [closo-(RHC[double bond, length as m-dash]CH)(x)CB(11)H(12-x)](-)x = 1-3, R = H, C(4)H(9). Addition of H(2) to this mixture converts the B-vinyl groups to B-ethyl; while sequential addition of 4 cycles of ethene (excess) and H(2) to CH(2)Cl(2) solutions of 5a-c results in multiple substitution of the cage (as measured by ESI-MS), with an approximately Gaussian distribution between 3 and 9 substitutions. Compositionally pure material was not obtained. Complexes 4a-c do not lose H(2). Addition of tert-butylethene (tbe) to 4a gives the new complex Rh(P(i)Pr(3))(eta(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6, characterised spectroscopically and by X-ray diffraction, which show coordination of the alkene ligand and bidentate coordination of the [closo-CB(11)H(6)Br(6)](-) anion. By contrast, addition of tbe to 4b or 4c results in transfer dehydrogenation to give the rhodium complexes Rh{PCy(2)(eta(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7 and Rh{PCyp(2)(eta(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9, which contain phosphine-alkene ligands. Complex has been characterised crystallographically.  相似文献   

18.
Yin W  Feng K  Wang W  Shi Y  Hao W  Yao J  Wu Y 《Inorganic chemistry》2012,51(12):6860-6867
The twelve quaternary rare-earth selenides Ba(2)MLnSe5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er) have been synthesized for the first time. The compounds Ba(2)GaLnSe(5) (Ln = Y, Nd, Sm, Gd, Dy, Er) are isostructural and crystallize in a new structure type in the centrosymmetric space group P ?1 of the triclinic system while the isostructural compounds Ba(2)InLnSe(5) (Ln = Y, Nd, Sm, Gd, Dy, Er) belong to the Ba(2)BiInS(5) structure type and crystallize in the noncentrosymmetric space group Cmc2(1) of the orthorhombic system. The structures contain infinite one-dimensional anionic chains (1)(∞)[GaLnSe(5)](4-) and (1)(∞)[InLnSe(5)](4-), and both chains are built from LnSe(6) octahedra and MSe(4) (M = Ga, In) tetrahedra in the corresponding selenides. As deduced from the diffuse reflectance spectra, the band gaps of most Ba(2)MLnSe(5) (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er) compounds are around 2.2 eV. The magnetic susceptibility measurements on Ba(2)GaGdSe(5) and Ba(2)InLnSe(5) (Ln = Nd, Gd, Dy, Er) indicate that they are paramagnetic and obey the Curie-Weiss law, while the magnetic susceptibility of Ba(2)InSmSe(5) deviates from the Curie-Weiss law as a result of the crystal field splitting. Furthermore, Ba(2)InYSe(5) exhibits a strong second harmonic generation response close to that of AgGaSe(2), when probed with the 2090 nm laser as fundamental wavelength.  相似文献   

19.
The binary systems Ca-Sn, Ba-Sn, Eu-Sn, Yb-Sn, Sr-Pb, Ba-Pb, and Eu-Pb do not contain Cr(5)B(3)-like A(5)Tt(3) phases when care is taken to exclude hydrogen from the reactions (Tt = tetrel, Si-Pb). All form ternary A(5)Tt(3)H(x)() phases (x < or = 1) with "stuffed" Cr(5)B(3)-like structures instead, and all of those tested, Ca-Sn, Ba-Sn, Sr-Pb, and Ba-Pb, also yield the isostructural A(5)Tt(3)F. The structures and compositions of Ca(5)Sn(3)H(x), Ca(5)Sn(3)F(0.89), Eu(5)Sn(3)H(x), and Sr(5)Pb(3)F have been refined from single-crystal X-ray diffraction data and of Ca(5)Sn(3)D from powder neutron data. The interstitial H, F atoms are bound in a tetrahedral (A(2+))(4) cavity in a Cr(5)B(3)-type metal atom structure. Nine previous reports of binary "Ba(5)Sn(3)", "Yb(5)Sn(3)", "Sr(5)Pb(3)", and "Ba(5)Pb(3)" compounds were wrong and presumably concerned the hydrides. The new ternary phases are generally Pauli-paramagnetic, evidently with pi electrons from the characteristic tetrelide dimers in this structure type at least partially delocalized into the conduction band. The Sn-Sn bonds appear correspondingly shortened on oxidation. Other new phases reported are CaSn (CrB type), Yb(5)Sn(4)H(x) (Sm(5)Ge(4)), YbSn ( approximately TlTe), Ba(5)Pb(3) ( approximately W(5)Si(3)), and Yb(31)Pb(20) (Ca(31)Sn(20)).  相似文献   

20.
The hydrothermal reactions of trivalent lanthanide and actinide chlorides with 1,2-methylenediphosphonic acid (C1P2) in the presence of NaOH or NaNO(3) result in the crystallization of three structure types: RE[CH(2)(PO(3)H(0.5))(2)] (RE = La, Ce, Pr, Nd, Sm; Pu) (A type), NaRE(H(2)O)[CH(2)(PO(3))(2)] (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; Am) (B type), or NaLn[CH(2)(PO(3)H(0.5))(2)]·(H(2)O) (Ln = Yb and Lu) (C type). These crystals were analyzed using single crystal X-ray diffraction, and the structures were used directly for detailed bonding calculations. These phases form three-dimensional frameworks. In both A and B, the metal centers are found in REO(8) polyhedra as parts of edge-sharing chains or edge-sharing dimers, respectively. Polyhedron shape calculations reveal that A favors a D(2d) dodecahedron while B adopts a C(2v) geometry. In C, Yb and Lu only form isolated MO(6) octahedra. Such differences in terms of structure topology and coordination geometry are discussed in detail to reveal periodic deviations between the lanthanide and actinide series. Absorption spectra for the Pu(III) and Am(III) compounds are also reported. Electronic structure calculations with multireference methods, CASSCF, and density functional theory, DFT, reveal localization of the An 5f orbitals, but natural bond orbital and natural population analyses at the DFT level illustrate unique occupancy of the An 6d orbitals, as well as larger occupancy of the Pu 5f orbitals compared to the Am 5f orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号