首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It is proved that the vertices of a cubic bipartite plane graph can be colored with four colors such that each face meets all four colors. This is tight, since any such graph contains at least six faces of size four.  相似文献   

4.
A simple linear algorithm is presented for coloring planar graphs with at most five colors. The algorithm employs a recursive reduction of a graph involving the deletion of a vertex of degree 6 or less possibly together with the identification of its several neighbors.  相似文献   

5.
6.
7.
Every planar graph is known to be acyclically 5-colorable (O.V.Borodin, 1976). Some sufficient conditions are also obtained for a planar graph to be acyclically 4- and 3-colorable. In particular, the acyclic 4-colorability was proved for the following planar graphs: without 3- and 4-cycles (O.V.Borodin, A.V. Kostochka, and D.R.Woodall, 1999), without 4-, 5-, and 6-cycles, or without 4-, 5-, and 7-cycles, or without 4-, 5-, and intersecting 3-cycles (M. Montassier, A.Raspaud andW.Wang, 2006), and without 4-, 5-, and 8-cycles (M. Chen and A.Raspaud, 2009). The purpose of this paper is to prove that each planar graph without 4- and 5-cycles is acyclically 4-colorable.  相似文献   

8.
In this article, we use a unified approach to prove several classes of planar graphs are DP-3-colorable, which extend the corresponding results on 3-choosability.  相似文献   

9.
The trivial lower bound for the 2-distance chromatic number χ 2(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ 2 = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ 2(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 23, which strengthens a similar result by O. V. Borodin, A. O. Ivanova, and T. K. Neustroeva (2004) and Z. Dvořák, R. Škrekovski, and M. Tancer (2008) for g ≥ 24.  相似文献   

10.
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of roughly 0.842 and runs in O(n3m) time, where n (respectively, m) is the number of vertices (respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time approximation algorithm was .  相似文献   

11.
12.
《Discrete Mathematics》2022,345(1):112631
For a graph G=(V,E), a total ordering L on V, and a vertex vV, let Wcol2[G,L,v] be the set of vertices wV for which there is a path from v to w whose length is 0, 1 or 2 and whose L-least vertex is w. The weak 2-coloring number wcol2(G) of G is the least k such that there is a total ordering L on V with |Wcol2[G,L,v]|k for all vertices vV. We improve the known upper bound on the weak 2-coloring number of planar graphs from 28 to 23. As the weak 2-coloring number is the best known upper bound on the star list chromatic number of planar graphs, this bound is also improved.  相似文献   

13.
设d_1,d_2,···,d_k是k个非负整数,若图G=(V,E)的顶点集V能被剖分成k个子集V_1,V_2,···,V_k,使得对任意的i=1,···,k,V_i的点导出子图G[Vi]的最大度至多为di,则称图G是(d_1,d_2,···,d_k)-可染的,本文证明了既不含4-圈又不含5-圈的平面图是(9,9)-可染的.  相似文献   

14.
For each fixed k ≥ 0, we give an upper bound for the girth of a graph of order n and size n + k. This bound is likely to be essentially best possible as n → ∞. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 194–200, 2002; DOI 10.1002/jgt.10023  相似文献   

15.
16.
Consider partitions of the vertex set of a graph G into two sets with sizes differing by at most 1: the bisection width of G is the minimum over all such partitions of the number of “cross edges” between the parts. We are interested in sparse random graphs Gn, c/n with edge probability c/n. We show that, if c>ln 4, then the bisection width is Ω(n) with high probability; while if c<ln 4, then it is equal to 0 with high probability. There are corresponding threshold results for partitioning into any fixed number of parts. ©2001 John Wiley & Sons, Inc. Random Struct. Alg., 18, 31–38, 2001  相似文献   

17.
For graphs G and F we write F → (G)1r if every r-coloring of the vertices of F results in a monochromatic copy of G. The global density m(F) of F is the maximum ratio of the number of edges to the number of vertices taken over all subgraphs of F. Let We show that The lower bound is achieved by complete graphs, whereas, for all r ≥ 2 and ? > 0, mcr(Sk, r) > r - ? for sufficiently large k, where Sk is the star with k arms. In particular, we prove that   相似文献   

18.
For each irrational a, 0<a<1, a particular countable graph G is defined which mirrors the asymptotic behavior of the random graph G(n, p) with edge probability p = n?a.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号