首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.  相似文献   

2.
在5种不同猝冷速度下制备Ni-Al合金,然后以碱处理并活化得到多孔猝冷骨架Ni催化剂.通过电感耦合等离子发射光谱(ICP)、X射线粉末衍射(XRD)、H2-程序升温脱附(H2-TPD)和氮物理吸附等方法对催化剂的物理化学性质进行了表征.结果发现,随着冷却速度的增加,活化后的催化剂具有更多的残余Ni2Al3相、更低的比表面积、更大的孔容和孔径、更小的Ni晶粒、更大的Ni-Ni间距和更加单一的活性位.另外,还发现在肉桂醛选择加氢反应中,冷却速度的提高也促进了催化剂的活性和对目标产物3-苯丙醛选择性的提高.以RQNi5为催化剂,加氢产物3-苯丙醛的收率达到88.8%,转化率为98.4%,明显优于工业上广泛使用的RaneyNi催化剂.同时,对猝冷骨架Ni催化剂的结构与催化性能之间的关系进行了讨论.  相似文献   

3.
裂化催化剂水热失活动力学及装置平衡活性模型   总被引:1,自引:0,他引:1  
根据裂化催化剂水热失活过程伴随着超稳化过程的特点,确定了对应不同自抑制函数的催化剂水热失活动力学模型方程。利用裂化催化剂水热失活实验数据进行参数估值,建立了裂化催化剂水热失活动力学模型。统计检验结果表明,二级自抑制的一级水热失活模型能很好地模拟实验数据,是较理想的水热失活动力学模型。考虑工业装置中裂化催化剂呈全混流,建立了裂化催化剂平衡活性模型方程,并且装置平衡催化剂微反活性的模型计算值与实测值相当吻合。该模型的预测结果表明,随着再生器温度或催化剂藏量的提高,平衡剂的微反活性逐步降低;平衡剂微反活性随催化剂单耗的提高先快速提高,然后缓慢提高。  相似文献   

4.
The adsorption equilibria of phenol and aniline on nonpolar polymer adsorbents (NDA-100, XAD-4, NDA-16 and NDA-1800) were investigated in single- and binary-solute adsorption systems at 313 K. The results showed that all the adsorption isotherms of phenol and aniline on these adsorbents can be well fitted by Freundlich and Langmuir equations, and the experimental uptake of phenol and aniline in all binary-component systems is obviously higher than predicted by the extended Langmuir model, arising presumably from the synergistic effect caused by the laterally acid-base interaction between the adsorbed phenol and aniline molecules. A new model (MELM) was developed to quantitatively describe the synergistic adsorption behavior of phenol/aniline equimolar mixtures in the binary-solute systems and showed a marked improvement in correlating the binary-solute adsorption of phenol and aniline by comparison with the widely used extended Langmuir model. The newly developed model confirms that the synergistic coefficient of one adsorbate is linearly correlated with the adsorbed amount of the other, and the larger average pore size of adsorbent results in the greater synergistic effect of phenol/aniline equimolar mixtures adsorption.  相似文献   

5.
Titanosilicate molecular sieves, when activated by ultraviolet light irradiation in water in the presence of molecular oxygen, catalyze a conversion of molecules having a size close to the pore of the catalysts but are inactive for molecules having much larger or smaller size. This unprecedented size-screening photocatalytic activity is triggered by a combination of H2O-induced shortened lifetime of active species (charge-transfer excited state of tetrahedrally coordinated titanium oxide) and restricted diffusion of a molecule inside the pore. This catalytic property demonstrates a potential utility of the catalyst for selective transformation of molecules that is associated with a size reduction of molecules, so-labeled "molecular shave" transformation.  相似文献   

6.
Mesoporous silica supported Cs_(2.5)H_(0.5)PW_(12)O_(40) catalysts were prepared by impregnation method,and several silica supports with different pore size were utilized.N_2 adsorption,XRD and ICP-AES techniques were utilized to characterize the silica supports and catalysts.XRD results showed that the dispersion of Cs_(2.5)H_(0.5)PW_(12) was better for the silica support with larger pore size.The catalytic activity results showed that the pore size played important role on the catalyst activity and the...  相似文献   

7.
用Montecarlo方法模拟了沸石分子筛中的复杂异构化反应ABC,考察了孔口失活对反应性能的影响.发现孔口失活对产物选择性和反应有效因子的影响取决于反应的Thiele模数.可分为三种情况:(1)在低Thiele模数下,影响不明显;(2)在中等Thiele模数下,有一定的影响,且随孔口活性位失活率的增加,某种产物的选择性线性增加而有效因子线性下降,但二者变化幅度均不大;(3)在较高Thiele模数下,影响显著.随着孔口活性位失活率的增加,某种产物选择性明显增加,有效因子明显下降.  相似文献   

8.
Grand canonical Monte Carlo and configurational bias Monte Carlo techniques were employed to simulate the adsorption of binary mixtures of butane isomers and quaternary mixtures in nine zeolites at 300 K. For binary mixtures the results show there is a critical pore size, which is 10-membered-ring about 5.6 Å. The channel sizes of BEA, ISV, MOR and CFI are larger than this critical pore size, they prefer i-butane than n-butane, whereas TON with smaller channel size than critical pore size prefers n-butane than i-butane, but its selectivity decreases with pressure increasing. MFI, MEL and TER prefer i-butane than n-butane at low pressure, but with pressure increasing, the selectivity is reversed. BOG prefers i-butane than n-butane but the selectivity decreased with pressure increasing. It demonstrates that the adsorption and selectivity are controlled by both pore size and pore structure. The n-butane–i-butane–n-pentane–2-methylbutane quaternary mixtures adsorbed in these nine zeolites were studied, and the results show alkane chain length dependence at low pressure, but the adsorption is controlled by pore size and structure with pressure increasing in all the zeolites except for TON and BOG.  相似文献   

9.
One of the methods of industrial dimethyl ether production is the catalytic dehydration of methanol. In this research work, methanol dehydration reactor has been modeled using continuous model and its results have been compared with experimental works and Voronoi pore network model. A 1D heterogeneous dispersed plug flow model was utilized to model an adiabatic fixed-bed reactor for the catalytic dehydration of methanol to dimethyl ether. The mass and heat transfer equations are numerically solved for the reactor. The concentration of the reactant and products and also the temperature varies along the reactor, therefore the effectiveness factor would also change in the reactor. We used the the effectiveness factor that was simulated according to the diffusion and reaction in the catalyst pellet as a Voronoi pore network model. Sensitivity analysis was performed to determine the influence of T, P and weight hourly space velocity on performance of the chemical reactor. Acceptable agreement was reached between the measured and the model data. The results showed that the maximum reaction conversion was obtained about 90 % at WHSV = 10 h?1 and T = 560 K, while the inlet temperature (Tinlet) had a greater effect on methanol conversion. In addition, the effect of water in the feed on methanol conversion was quantitatively studied. Also, the deactivation kinetics of γ-Al2O3 heterogeneous-acidic catalyst in methanol to dimethyl ether dehydration process was studied using integral analysis method. Based on independent deactivation kinetics, a second order was found that accurately fitted the experimental conversion time data. The main reaction activation energies and catalyst deactivation energies were 143.1 and ?102.1 kJ/mol, respectively.  相似文献   

10.
姚敏  胡思  王俭  窦涛  伍永平 《物理化学学报》2012,28(9):2122-2128
甲醇催化制丙烯(MTP)是一个具有重要工业应用的研究课题, 目前普遍采用的催化剂是HZSM-5 分子筛. 通过调节分子筛合成原料的配比、晶化温度和晶化时间等参数, 对所制备的不同晶粒尺寸的HZSM-5 分子筛, 综合利用X射线衍射(XRD)、扫描电镜(SEM)、N2吸附和氨气程序升温脱附(NH3-TPD)等手段表征了其晶格结构、表观形貌、孔结构以及酸性质. 利用固定床反应装置对HZSM-5 分子筛甲醇催化制丙烯的活性和稳定性进行了评价, 并采用热重(TG)分析技术对催化剂的积炭性能进行了考察. 实验结果表明, HZSM-5 分子筛粒度的减小可以增加分子筛比表面积、孔体积, 同时有更多开放的孔口及短的孔道长度, 有利于反应物分子的吸附和传质,并降低了产物分子在孔道中的扩散距离及发生二次反应的几率, 提高了催化剂的抗积炭能力和容炭能力以及稳定性; 而且所合成的小尺寸分子筛单位质量的总酸量及强酸量均有不同程度的下降, 有利于提高目标产物丙烯的选择性.  相似文献   

11.
We performed grand canonical Monte Carlo simulations for a Lennard-Jones fluid confined in a jungle-gym (JG) nanospace of cubic structure modeled on a specific type of metal organic frameworks (MOFs) to investigate freezing phenomena. Our simulations clarified that the JG nanospace with the pore sizes from 5sigma to 11sigma strongly depresses freezing due to a geometrical hindrance effect, resulting in far lower freezing temperature than the bulk freezing point. The fluid-rod interaction is found to give little effect on the freezing temperature in the larger pore sizes. For smaller pores from 2sigma to 3sigma, on the other hand, a dominant factor is a template effect to enhance the localization of molecules into a specific configuration that matches the locations of potential minima, leading to a variety of molecular configurations. In this range of smaller pore sizes, the solidification temperatures are higher than those of the larger pores mainly due to strong influence of the fluid-rod interaction but are still lower than the bulk freezing temperature. In addition, a unique solid-to-solid transition is observed in a specific size of pore of 2.73sigma, which is caused by structural correlation between adjacent cells. On the basis of these results, a phase diagram in the JG nanospace is drawn.  相似文献   

12.
Fragrances are frequently added to a variety of products, including food, cosmetics and health products. However, the high volatility and instability of essence limit its application in some fields. In this study, mesoporous silica nanoparticles (MSNs) were prepared to encapsulate eugenol, which could reduce the volatilization of the fragrance molecules. A facile approach was presented to synthesize MSNs with three different pore diameters for encapsulating eugenol. In addition, the properties of MSNs including mean particle size, morphology, encapsulating efficiency and release tendency were characterized. Results showed that the larger the pore diameters of MSNs, the more aromatic molecules were adsorbed. Furthermore, the release mechanism was described as the smaller the pore diameters of MSNs, the slower the release of eugenol.  相似文献   

13.
Nitro compounds are known to change reaction rates and kinetic concentration dependence of Brønsted-acid-catalyzed reactions. Yet, no mechanistic model exists to account for these observations. In this work, an atomistic model for the catalytically active form for an alcohol dehydroazidation reaction is presented, which is generated by DFT calculations and consists of an H-bonded aggregate of two molecules of Brønsted acid and two molecules of nitro compound. The computed O−H stretching frequencies for the aggregate indicate they are stronger acids than the individual acid molecules and serve as predictors for experimental reaction rates. By applying the model to a chemically diverse set of potential promoters, it was predicted and verified experimentally that sulfate esters induce a similar co-catalytic effect. The important implication is that Brønsted-acid catalysis must be viewed from a supramolecular perspective that accounts for not only the pKa of the acid and the bulk properties of a solvent, but also the weak interactions between all molecules in solution.  相似文献   

14.
The behavior of nematic liquid crystal (LC) Merck Phase 4 confined to controlled pore glass (CPG) materials was investigated using 129Xe nuclear magnetic resonance (NMR) spectroscopy of xenon gas dissolved in the LC. The average pore diameters of the materials varied from 81 to 2917 A, and the measurements were carried out within a wide temperature range (approximately 185-370 K). The spectra contain lots of information about the effect of confinement on the phase of the LC. The theoretical model of shielding of noble gases dissolved in liquid crystals on the basis of pairwise additivity approximation was applied to the analysis of the spectra. When pore diameter is small, smaller than approximately 150 A, xenon experiences on average an isotropic environment inside the pore, and no nematic-isotropic phase transition is observed. When the size is larger than approximately 150 A, nematic phase is observed, and the LC molecules are oriented along pore axis. The orientational order parameter of the LC, S, increases with increasing pore size. In the largest pores, the orientation of the molecules deviates from the pore axis direction to magnetic field direction, which implies that the size of the pores (approximately 3000 A) is close to magnetic coherence length. The decrease of magnetic coherence length with increasing temperature is clearly seen from the spectra. When the sample is cooled rapidly by immersing it in liquid nitrogen, xenon atoms do not squeeze out from the solid, as they do during gradual freezing, but they are occluded inside the solid lattice, and their chemical shift is very sensitive to crystal structure. This makes it possible to study the effect of confinement on the solid phases. According to the measured 129Xe NMR spectra, possibly three different solid phases are observed from bulk liquid crystal in the used temperature region. The same is also seen from the samples containing larger pores (pore size larger than approximately 500 A), and the solid-solid phase-transition temperatures are the same. However, no first-order solid-solid phase transitions are observed from the smaller pores. Melting point depression, that is, the depression of solid-nematic transition temperature observed from the pores as compared with that in bulk LC, is seen to be very sensitive to the pore size, and it can be used for the determination of pore size of an unknown material.  相似文献   

15.
The chromatography of mechanically sensitive macromolecules still represents a challenge. While larger pores can reduce the mechanically induced cleavage of large macromolecules and column clogging, the column performance inevitably decreases. To investigate the effect of pore size on the mechanical degradation of DNA, column permeability and enzyme biological activity, methacrylate monoliths with different pore sizes were tested. Monolith with a 143 nm pore radius mechanically damaged the DNA and was clogged at flow rates above 0.5 ml min(-1) (26 cm h(-1)). For monoliths with a pore radius of 634 nm and 2900 nm, no mechanical degradation of DNA was observed up to 5 ml min(-1) (265 cm h(-1)) above which the HPLC itself became the main source of damage. A decrease of a permeability appeared at flow rate 1.8 ml min(-1) (95 cm h(-1)) and 2.3 ml min(-1) (122 cm h(-1)), respectively. The effect of the pore size on enzyme biological activity was tested with immobilized DNase and trypsin on all three monoliths. Although the highest amount of enzyme was immobilized on the monolith with the smallest pores, monolith with the pore radius 634 nm exhibited the highest DNase biological activity probably due to restricted access for DNA molecules into the small pores. Interestingly, specific biological activity was increasing with a pore size decrease. This was attributed to higher number of contacts between a substrate and immobilized ligand.  相似文献   

16.
New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization.  相似文献   

17.
There has been expanding interest in exploring porous metal oxides as a confining environment for organic molecules resulting in altered chemical and physical properties including chemical transformations. In this paper, we examine the pyrolysis behavior of phenethyl phenyl ether (PPE) confined in mesoporous silica by covalent tethers to the pore walls as a function of tether density and the presence of cotethered surface spacer molecules of varying structure (biphenyl, naphthyl, octyl, and hexadecyl). The PPE pyrolysis product selectivity, which is determined by two competitive free-radical pathways cycling through the two aliphatic radical intermediates (PhCH·CH(2)OPh and PhCH(2)CH·OPh), is shown to be significantly different from that measured in the liquid phase as well as for PPE tethered to the exterior surface of nonporous silica nanoparticles. Tailoring the pore surface with spacer molecules further alters the selectivity such that the PPE reaction channel involving a molecular rearrangement (O-C phenyl shift in PhCH(2)CH·OPh), which accounts for 25% of the products in the liquid phase, can be virtually eliminated under pore confinement conditions. The origin of this change in selectivity is discussed in the context of steric constraints on the rearrangement path inside the pores, surface and pore confinement effects, pore surface curvature, and hydrogen bonding of PPE with residual surface silanols supplemented by nitrogen physisorption data and molecular dynamics simulations.  相似文献   

18.
The configurational-bias Monte Carlo method, which is used for efficient generation of molecular models of n-alkane chains, is combined for the first time with the dual control-volume grand-canonical molecular-dynamics simulation, which has been developed for studying transport of molecules in pores under an external potential gradient, to investigate transport and separation of binary mixtures of n-alkanes, as well as mixtures of CO2 and n-alkanes, in carbon nanopores. The effect of various factors, such as the temperature of the system, the composition of the mixture, and the pore size, on the separation of the mixtures is investigated. We also report the preliminary results of an experimental study of transport and separation of some of the same mixtures in a carbon molecular-sieve membrane with comparable pore sizes. The results indicate that, for the mixtures considered in this paper, even in very small carbon nanopores the energetic effects still play a dominant role in the transport and separation properties of the mixtures, whereas in a real membrane they are dominated by the membrane's morphological characteristics. As a result, for the mixtures considered, a single pore may be a grossly inadequate model of a real membrane, and hence one must resort to three-dimensional molecular pore network models of the membrane.  相似文献   

19.
A key parameter in membrane and chromatographic separations is the partition coefficient, the equilibrium ratio of the solute concentration in a porous or fibrous material to that in bulk solution. The theoretical effects of solute size on partition coefficients in straight pores or randomly oriented fiber matrices have been investigated previously for very dilute solutions, where solute-solute interactions are negligible, and also for more concentrated solutions consisting of spherical solutes of uniform size. For concentrated solutions it has been found that steric and other repulsive interactions among solutes increase the partition coefficient above the dilute limit. To extend the results for porous or fibrous media to include concentrated mixtures of solutes with different sizes or shapes, we used an excluded volume approach. In this formulation, which describes steric interactions only, partition coefficients were computed by summing all volumes excluded to a solute molecule by virtue of its finite size, the finite size of other solutes, and the presence of fixed obstacles (pore walls or fibers). For a mixture of two spherical solutes, the addition of any second solute at finite concentration increased the partition coefficient of the first solute. That increase was sensitive to the size of the second solute; for a given volume fraction of the second solute, the smaller its radius, the larger the effect. When the total volume fraction of solutes was fixed, an increase in the amount of a second, smaller solute increased the partition coefficient of the first solute, whereas an increase in the amount of a second, larger solute had the opposite effect. Results were obtained also for oblate or prolate spheroidal solutes and for fibrous media containing fibers of different radii. For constant total fiber volume fraction, an increase in the amount of a second, smaller fiber decreased the partition coefficient of a spherical solute, whereas an increase in the amount of a second, larger fiber had the opposite effect. Overall, the theory suggests that the introduction of heterogeneities, whether as mixtures of solute sizes or mixtures of fiber sizes, may cause partition coefficients to differ markedly from those of uniform systems. Copyright 2000 Academic Press.  相似文献   

20.
Methanol-to-olefin (MTO) conversion over various zeolites with different topologies, Si/Al molar ratios, and crystallite sizes were investigated to verify the effects of pore shape and size, acidity, and external surface area on the catalytic activity, product selectivity, and deactivation. The IR and electron spin resonance (ESR) study of zeolite catalysts used in MTO also proceeded to deduce the active intermediates formed in their cages or pores. The zeolites with 8 membered-ring (MR) pore entrances such as CHA, ERI, LTA, and UFI commonly exhibited high selectivity to lower olefins due to their small entrances, but the CHA catalyst with the smallest cage maintained its activity longer than other 8MR zeolites. The slow condensation of polymethylbenzene (PolyMB) to polyaromatic hydrocarbons (PAH) on MOR zeolite with a high Si/Al molar ratio due to its low concentration of strong acid sites resulted in a slow deactivation. The extremely small crystallites of H-SAPO-34 and H-ZSM-5 less than 100 nm showed an adverse effect in MTO; while the large crystallites above 1,000 nm also exhibited poor catalytic performance because of their small external surface. The study of IR regarding the adsorbed and occluded materials on zeolites demonstrated the effect of pore shape and size on the active intermediates: the zeolites with larger pores and cages allowed the formation of alkylbenzenes with long alkyl groups which preferred to be condensated to PAH. The well-resolved hyperfine splitting of ESR spectra observed on H-SAPO-34 used in MTO clearly illustrated the presence of hexamethylbenzenium radical cations. The small intersections of phosphorous-modified H-ZSM-5 allowed the formation of tetramethylbenzenium radical cations in MTO. The formation of PolyMB radical cations, their role as active intermediates and the effect of topology, acidity, and crystallite size of zeolites on their deactivation were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号