首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical and electrocatalytic properties of two synthetic imidazole analogues of the redox cofactor pyrroloquinoline quinone (PQQ) were evaluated. Cyclic voltammetry measurements as a function of pH indicated that both 4,5‐dihydro‐4,5‐dioxo‐1H‐imidazolo[5,4‐f]quinoline‐7,9‐dicarboxylic acid ( 1 ) and 4,5‐dihydro‐4,5‐dioxo‐2‐methyl‐1H‐imidazolo[5,4‐f]quinoline‐7,9‐dicarboxylic acid ( 2 ) undergo a reversible reduction of the o‐quinone moiety below pH 8 with potentials slightly more positive than those observed for PQQ. Upon incorporation into a polypyrrole membrane on the tip of a glassy carbon electrode, 1 and 2 exhibited electrocatalytic properties sufficient for the indirect amperometric detection of cysteine. The response for cysteine was linear up to 1 mM over a wide pH range. Detection limits (S/N=3) were in the μM range and dependent on the solution pH. Interference from redox active species such as dopamine and uric acid were minimized by the pH‐dependent redox potentials of 1 and 2 and thus the ability to tune the detection potential.  相似文献   

2.
Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151Eu-Mössbauer spectroscopy, X-ray total scattering, and extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent.  相似文献   

3.
Rare‐earth metal cations have recently been demonstrated to be essential co‐factors for the growth of the methanotrophic bacterium Methylacidiphilum fumariolicum SolV. A crystal structure of the rare‐earth‐dependent methanol dehydrogenase (MDH) includes a cerium cation in the active site. Herein, the Ce–MDH active site has been analyzed through DFT calculations. The results show the stability of the CeIII–pyrroloquinoline quinone (PQQ) semiquinone configuration. Calculations on the active oxidized form of this complex indicate a 0.81 eV stabilization of the PQQ0 LUMO at cerium versus calcium, supporting the observation that the cerium cation in the active site confers a competitive advantage to Methylacidiphilum fumariolicum SolV. Using reported aqueous electrochemical data, a semi‐empirical correlation was established based on cerium(IV/III) redox potentials. The correlation allowed estimation of the cerium oxidation potential of +1.35 V versus saturated calomel electrode (SCE) in the active site. The results are expected to guide the design of functional model complexes and alcohol‐oxidation catalysts based on lanthanide complexes of biologically relevant quinones.  相似文献   

4.
Enzyme electrodes containing pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) as a biological component in combination with 4-ferrocenylphenol (1) as an electron transfer mediator between PQQ and a carbon electrode were constructed and used for measurements of ethanol and d-glucose. Analysis of the current response of the carbon electrodes modified with 1 at different pH and potentials demonstrated that 1 participates in the bioelectrocatalytic oxidation of d-glucose or ethanol. The biosensors showed the highest response at pH 5.5 and the working potentials of 0.3 and 0.4 V (versus Ag|AgCl) for ADH and GDH, respectively. The electrocatalytic processes under such conditions at these electrodes are characterized by the apparent values of the Michaelis constants KMapp of 7.1 and 13 mM and the maximal current density jmax 40 and 26 μA cm−2 for ethanol and d-glucose, respectively. No electrocatalysis was found when glucose oxidase from Aspergillus niger was used instead of GDH.  相似文献   

5.
Thiolated o‐quinone‐capped electrocatalysts modeled on the naturally occurring o‐quinone cofactor pyrroloquinoline quinone (PQQ) were designed and synthesized for the development of biosensor devices. The o‐quinone‐capped electrocatalysts self assembled on gold electrodes through a thiolated phenyleneethynylene linkage to form a monolayer less than 2 nm in thickness. Cyclic voltammetric measurements demonstrated reversible electrochemical properties between the quinone and hydroquinone forms of the head group. In an amperometric sensing mode, the modified electrodes reproducibly detected ethanethiol at micromolar levels demonstrating their robust electrocatalytic activity toward thiols. Their redox cycling and electrocatalytic properties show promise for detection of biologically important thiols and other nucleophiles.  相似文献   

6.
Vanadium pentoxide (V2O5) was electrodeposited on a poly(p-phenylene terephtalamide) (PPTA)-film coated electrode. The cyclic voltammogram of the film had a reversible redox current peak. The film was dark green in the reduced state and yellow in the oxidized state. To obtain new colour, gold was further electrodeposited on the film. Not only the redox current peak but also a new redox current shoulder appeared in the cyclic voltammogram of the obtained film, and it exhibited a multicoloured electrochromism: blackish green  dark green  green   bright red. The red colour in the oxidized state was first obtained for the V2O5 film. The new redox current shoulder and the colour were probably due to AuyV2O5 partially formed during electrodeposition of the gold. The redox of the AuyV2O5 was accompanied by egress and ingress of Li+ ions and the new colour change.  相似文献   

7.
The equation of the linear potential sweep voltammogram is derived for any degree of reversibility of the electrochemical reaction for a surface redox system, when interactions between the adsorbed molecules are present. When the reaction is reversible (ks/v→∞; ks: rate of the electrochemical reaction; v=sweep rate), the cathodic and anodic peaks are identical. When the reaction is not reversible the shape of the cathodic and anodic peaks can become widely different, depending on the interaction coefficients. The characteristics of the peaks are studied. Applications to submonolayer adsorption and to redox polymer modified electrodes are discussed.  相似文献   

8.
Diquaternary salts of 2,4-di-(4-pyridyl)-1,3,5-triazines have been prepared. The salts can be regarded as reversible one electron transfer systems with redox potentials (E0) of about ?0·44 V in the pH range 7·0–8·5. 2,4-Bis-(4-methyl-4-pyridinio)-1,3,5-triazinediium dihalides are effective post-emergent herbicides at application rates of 4–6 kg/hectare.  相似文献   

9.
Oxidation of alcohols by direct hydride transfer to the pyrroloquinoline quinone (PQQ) cofactor of quinoprotein alcohol dehydrogenases has been studied using ab initio quantum mechanical methods. Energies and geometries were calculated at the 6-31G(d,p) level of theory. Comparison of the results obtained for PQQ and several derivatives with available structural and spectroscopic data served to judge the feasibility of the calculations. The role of calcium in the enzymatic reaction mechanism has been investigated. Transition state searches have been conducted at the semiempirical and STO-3G(d) level of theory. It is concluded that hydride transfer from the Calpha-position of the substrate alcohol (or aldehyde) directly to the C(5) carbon of PQQ is energetically feasible. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1732-1749, 2001  相似文献   

10.
《Chemical physics letters》1987,134(5):471-476
A metallophthalocyanine radical, PcLi, was prepared by electrochemical oxidation of the corresponding dianion. The redox properties in solution show that PcLi is both easily reduced and easily oxidized (ΔE = Ered1/2-E1/2ox = 0.83 V). This property is of the utmost importance for obtaining intrinsic molecular semiconductors. The optical properties are similar to those for oxidized phthalocyanines and involve two low-lying π-π transitions at 430 and 810 nm. Despite the tendency to aggregation, the ESR spectrum of the isolated PcLi molecule has been obtained. It is consistent with an unpaired electron delocalized over the whole phthalocyanine ring.  相似文献   

11.
To survey the noninnocence of bis(arylimino) acenaphthene (BIAN) ligands (L) in complexes with early metals, the homoleptic vanadium complex, [V(L)3] ( 1 ), and its monocation, [V(L)3]PF6 ( 2 ), were synthesized. These complexes were found to have a very rich electronic behavior, whereby 1 displays strong electronic delocalization and 2 can be observed in unprecedented valence tautomeric forms. The oxidation states of the metal and ligand components in these complexes were assigned by using spectroscopic, crystallographic, and magnetic analyses. Complex 1 was identified as [VIV(Lred)(L.)2] (Lred=N,N′‐bis(3,5‐dimethylphenylamido)acenaphthylene; L.=N,N′‐bis(3,5‐dimethylphenylimino)acenaphthenesemiquinonate). Complex 2 was determined to be [VV(Lred)(L.)2]+ at T<150 K and [VIV(L.)3]+ at T>150 K. Cyclic voltammetry experiments reveal six quasi‐reversible processes, thus indicating the potential of this metal–ligand combination in catalysis or materials applications.  相似文献   

12.
Six indophenols, with redox and acid—base indicator properties, have been examined by spectrophotometric and potentiometric methods. By analysing the absorption spectra obtained at different pH values, three independent values were obtained for their KOx dissociation constants, which are closely related to their properties as acid—base indicators. Three of the indophenols have also been examined by acid—base and redox potentiometric titrations. All KOx and E° values agree well with polarographic values. The use of these substances as visual acid—base and redox indicators is discussed.  相似文献   

13.
The ability of pyridyldithiafulvenes to react as monodentate ligand with Mo(CO)6 and Pb(ClO4)2 has been investigated. The corresponding molybdenum carbonyl complexes have been isolated while no coordination to lead has been observed. As evidenced by X-ray crystal structure analysis, protonation of the pyridyl moiety has occurred due to the propensity of lead perchlorate trihydrate to hydrolyze in acetonitrile. The spectroscopic and redox properties of the molybdenum complexes as well as the pyridinium dithiafulvenes have been compared with their precursors and discussed.  相似文献   

14.
(E)-2-(1′-Formylruthenocenyl)ethenyl-1′,2,2′,3,3′,4,4′,5-octamethylferrocene (1) and (all-E)-2,5-bis[2-[1′-[2-(1′,2,2′,3,3′,4,4′,5-octamethylferrocenyl)ethenyl]ruthenocenyl]ethenyl]thiophene (2) were synthesized by a sequence of Wittig olefinations. The X-ray structure of 1 is reported. The cyclic voltammogram of compound 1 shows the irreversible one-electron transfer expected for ruthenocene and a reversible wave for the octamethylferrocene moiety. Both waves occur at about the same potential as observed for the parent metallocenes. Compound 2, however, exhibits completely unusual redox properties. In contrast to most ruthenocene-containing compounds, a reversible two-electron transfer is observed at a significantly lower potential than found usually for ruthenocenes that can be attributed unambiguously to the independent oxidation/reduction of the two ruthenocene moieties. The unexpected stability of the oxidation products must be due to the presence of the thiophene-ethene bridge, which facilitates the oxidation reaction and stabilizes the reaction products by delocalization of the valence electrons.  相似文献   

15.
Extracellular D-glucose oxidation by 5 enterobacterial species was studied with the purpose of selecting conditions useful for taxonomic studies. Extracellular production of gluconate from 14C-glucose by bacterial cells was evidenced by DEAE-cellulose paper chromatography. Escherichia coli oxidized glucose only when pyrroloquinoline quinone (PQQ) was added, whereas Serratia marcescens, Yersinia frederiksenii, Erwinia cypripedii and Cedecea lapagei oxidized D-glucose without added PQQ. 2-Deoxyglucose was found to be an excellent non-metabolized analogue of D-glucose in oxidation experiments. D-glucose oxidation was inhibited by KCN, p-chloromercuribenzoic acid and carbonyl cyanide m-chlorophenylhydrazone; and activated by p-benzoquinone. Iodoacetate had no action. Comparative cellulose thin-layer chromatography including 2-ketogluconate and 2,5-diketogluconate (produced by Janthinobacterium lividum) as standards, showed that gluconate was oxidized to 2-ketogluconate by S. marcescens and E. cypripedii, and 2-ketogluconate was oxidized to 2,5-diketogluconate by E. cypripedii. The diversity of D-glucose oxidation products in the Enterobacteriaceae could have some taxonomic applications.  相似文献   

16.
In this study, the feasibility of introducing redox property to an amphiphilic phospholipid polymer (PMBN) was investigated. The active ester group in the side chain of the polymer was used to react with pyrroloquinoline quinine (PQQ). Redox peaks that corresponded to PQQ redox potentials were observed after the modification. Glucose oxidase was immobilized to the modified polymer. Electrochemical oxidation of glucose was carried out with the polymer electrode. The oxidation current increased with elevating glucose concentration indicating electron transfer established between the electrode and enzyme. It suggests that by modification, PMBN is possible to use for enzyme electrode for bioelectronics.  相似文献   

17.
A new artificial photosynthetic triad array, a [60]fullerene–triosmium cluster/zinc–porphyrin/boron–dipyrrin complex ( 1 , Os3C60/ZnP/Bodipy), has been prepared by decarbonylation of Os3(CO)8(CN(CH2)3Si(OEt)3)(μ3‐η222‐C60) ( 6 ) with Me3NO/MeCN and subsequent reaction with the isocyanide ligand CNZnP/Bodipy ( 5 ) containing zinc porphyrin (ZnP) and boron dipyrrin (Bodipy) moieties. Triad 1 has been characterized by various spectroscopic methods (MS, NMR, IR, UV/Vis, photoluminescence, and transient absorption spectroscopy). The electrochemical properties of 1 in chlorobenzene (CB) have been examined by cyclic voltammetry; the general feature of the cyclic voltammogram of 1 is nine reversible one‐electron redox couples, that is, the sum of those of 5 and 6 . DFT has been applied to study the molecular and electronic structures of 1 . On the basis of fluorescence‐lifetime measurements and transient absorption spectroscopic data, 1 undergoes an efficient energy transfer from Bodipy to ZnP and a fast electron transfer from ZnP to C60; the detailed kinetics involved in both events have been elucidated. The SAM of triad 1 ( 1 /ITO; ITO=indium–tin oxide) has been prepared by immersion of an ITO electrode in a CB solution of 1 and diazabicyclo‐octane (2:1 equiv), and characterized by UV/Vis absorption spectroscopy, water contact angle, X‐ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of 1 /ITO have been investigated by a standard three‐electrode system in the presence of an ascorbic acid sacrificial electron donor. The quantum yield of the photoelectrochemical cell has been estimated to be 29 % based on the number of photons absorbed by the chromophores. Our triad 1 is unique when compared to previously reported photoinduced electron‐transfer arrays, in that C60 is linked by π bonding with little perturbation of the C60 electron delocalization.  相似文献   

18.
《Analytical letters》2012,45(14):2664-2672
Abstract

Direct electrochemistry of the myoglobin‐triacetone triperoxide (Mb‐TATP) composite on carbon paste (CP) electrode is reported. This electrode gives a well‐defined and quasi‐reversible cyclic voltammogram for the Mb FeIII/FeII redox coupled with the formal potential (E?′) of ?0.302 V (vs. Ag/AgCl) in pH 6.92 phosphate buffer. Electronic and vibrational spectroscopies show that the Mb in the composite retains a structure similar to its native form. The enzymatic reactivity to the reduction of H2O2 has been studied for the Mb‐TATP film. The analytical performances have been obtained with the linear range of 78.32–1135.64 µM, the detection limit of 55 µM (S/N=3), and the apparent Michaelis‐Menten constant (K m) of 662.8 µM. This H2O2 biosensor based on the electrocatalysis of the immobilized Mb presents a higher stability within two weeks.  相似文献   

19.
We report the first electrochemical study of a lanthanoid-dependent methanol dehydrogenase (Eu-MDH) from the acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV with its own physiological cytochrome cGJ electron acceptor. Eu-MDH harbours a redox active 2,7,9-tricarboxypyrroloquinoline quinone (PQQ) cofactor which is non-covalently bound but coordinates trivalent lanthanoid elements including Eu3+. Eu-MDH and the cytochrome were co-adsorbed with the biopolymer chitosan and cast onto a mercaptoundecanol (MU) monolayer modified Au working electrode. Cyclic voltammetry of cytochrome cGJ reveals a well-defined quasi-reversible FeIII/II redox couple at +255 mV vs. NHE at pH 7.5 and this response is pH independent. The reversible one-electron response of the cytochrome cGJ transforms into a sigmoidal catalytic wave in the presence of Eu-MDH and its substrates (methanol or formaldehyde). The catalytic current was pH-dependent and pH 7.3 was found to be optimal. Kinetic parameters (pH dependence, activation energy) obtained by electrochemistry show the same trends as those obtained from an artificial phenazine ethosulfate/dichlorophenol indophenol assay.  相似文献   

20.
The electrochemical reduction of di-carboxylic acids; oxalic, succinic, malic, and tartaric have been studied on the gold nanoparticles modified electrode in aqueous media solution of 0.1 M KCl. Gold nanoparticle (AuNPs)-modified electrodes were prepared by the electrodeposition with cyclic voltammetric method onto glassy carbon electrode in acidic media. The surface morphology of the electrodeposited gold nanoparticles was examined by SEM. Also, the electrochemical properties of the prepared electrodes were investigated with different electrochemical techniques; cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Cyclic voltammetric, chronoamperometric, and electrochemical impedance spectroscopic techniques were used for investigating the electrochemical behavior of the particulate acids. The modification of the electrode with Au nanoparticles (AuNPs) enables the appearance of cyclic voltammogram peaks completely clear and sharp for the acids under investigation in comparison with the poor behavior of them in absence of the modification. All acids undergo totally irreversible redox reaction in neutral and acid media. The cyclic voltammetric response of the investigated acids is sensitive to pH, as well as of the scan rate. Each acid has a different reduction peak position from the other acids depending on the structure of the acid undergo the electroreduction process. Further, the lowest unoccupied molecular orbital energies of the investigated acids have been theoretically evaluated and are compared with their electroreduction potential peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号