首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
 The rheology of high internal phase ratio oil-in-water emulsions was investigated using a controlled-stress rheometer. The dispersed-phase (oil) concentration was varied from 71.24 to 89.61% by volume. Three different types of rheological experiments were conducted for each emulsion, namely: steady shear, oscillatory shear, and creep/recovery experiments. All the emulsions investigated in this study possess a yield stress. The yield-stress values obtained from different rheological experiments for the same emulsion show good agreement with each other. The yield-stress value increases exponentially with an increase in the dispersed-phase concentration. The yield-stress data of this study can be described quite well with the Princen and Kiss equation for high internal phase ratio emulsions provided that the thickness of the interdroplet films is taken into account. For any given emulsion, the storage modulus, measured in the linear viscoelastic region, is found to be constant, independent of the frequency, indicating a solid-like behaviour. The value of the storage modulus increases with an increase in the dispersed-phase concentration. The storage modulus data are interpreted in terms of the Princen and Kiss equation. Received: 23 October 1998 Accepted in revised form: 18 February 1999  相似文献   

2.
An experimental study on yield stress of water-in-heavy crude oil emulsions has been carried out by using a HAAKE RS6000 Rheometer with a vane-type rotor. Several factors such as oil volume fraction, shear rate, temperature, and emulsifying agent on the yield stress of emulsions were investigated. Zero shear viscosity of heavy crude oil was 6000 mPas at 30°C, with a density 955 kg/m3. This study shows that the yield stress increases linearly with the increasing shear rate, and displays an exponential decay with increasing the temperature and oil volume fraction. Although the addition of emulsifying agent enhanced the stability of the emulsion, to some extent it also increased the yield stress, especially for the emulsions with high oil volume fractions. Therefore, to reduce the start-up force for the pipeline transport of water-in-heavy crude oil emulsions, the starting rate should be decreased, temperature increased, or oil volume fraction increased. These results are helpful to improve the transportation of water-in-heavy crude oil in pipeline.   相似文献   

3.
The linear viscoelastic behavior of polymer-thickened oil-in-water emulsions, polymer-thickened solids-in-liquid suspensions, and their blends is investigated using a controlled-stress rheometer. The emulsions exhibit a predominantly viscous behaviour at low values of oil concentration in that the loss modulus (G") exceeds the storage modulus (G') over most of the frequency range. At high values of oil concentration, the emulsions exhibit a predominantly elastic behavior. The ratio of storage modulus to loss modulus (G'/G") increases with the increase in oil concentration. Emulsions follow the theoretical model of J. F. Palierne (1990, Rheol. Acta 29, 204) only at low values of oil volume fraction (/=G' over most of the frequency range. The ratio G'/G" varies only slightly with the increase in solids volume fraction. The Palierne model describes the linear viscoelastic properties of suspensions accurately only at low values of solids volume fraction. At high values of solids concentration, the Parlierne model underpredicts the linear viscoelastic properties of suspensions and the deviation increases with the increase in solids concentration. The blends of emulsions and suspensions exhibit strong synergistic effects at low to moderate values of frequencies; the plots of blend modulus versus emulsion content exhibit a minimum. However, at high values of frequency, the blend modulus generally falls between the moduli of pure suspension and pure emulsion. The high-frequency modulus data of blends of emulsions and suspensions are successfully correlated in terms of the modulus ratio versus volume fraction of solids, where modulus ratio is defined as the ratio of blend modulus to pure emulsion modulus at the same frequency. Copyright 2000 Academic Press.  相似文献   

4.
The transport of heavy oil as concentrated oil-in-water (O/W) emulsions is one of the most promising pipeline techniques, and how to ensure a steady flow is the key to the successful application of this technology. Most of the previous studies focused on the static stability of the emulsions. However, the stability changes constantly with time and external shearing in the transportation. In this paper, a stable O/W emulsion was prepared for its dynamic stability to be tested by three methods of small-scale flow loop, rheology and stirring, respectively. The results indicated that the O/W emulsion with 30 vol.% water and 0.2 wt.% OP-10 could well satisfy the transport requirement. A critical temperature existed to make the rheological property of the emulsion rapidly deteriorate. For low-Reynolds-number turbulent pipe flow, an appropriate increase of temperatures and shear rates was conducive to the flocculation-dissociation balance of the internal phase, which could effectively reduce the apparent viscosity of the emulsion and the flow frictional resistance. High flow rate of O/W emulsions could be transported at relatively low temperatures to ensure great dynamic stability, and low flow rate of that could be done at relatively high temperatures to obtain low apparent viscosity.  相似文献   

5.
This study shows the effects of the Tween 60 emulsifier at different concentrations on the aqueous emulsion containing 5% of Pistacia lentiscus fruit oil. The rheological behavior and the droplet size distribution of cosmetic oil-in-water emulsions were investigated. This investigation was carried out by analyzing the shear flow and dynamic oscillatory followed by microscopic analysis and physical stability study for 24?hours and 4 months. During the period of 4 months, the emulsions were stored in a refrigerator at a semi-low temperature 12?°C. The physical stability test showed that the sample not emulsified yielded a creaming process after a short aging time. Flow curves of emulsions prepared with TW 60 exhibited a non-linear relationship between the shear stress σ and shear rate γ ?, which implies that the Herschel–Bulkley rheological model was the appropriate model for the shear flow. The increase of emulsifier quantities leading to an increase in the internal structure coherence, whereas the excess quantity affects the structure. Therefore, the optimal quantity proposed was 3.47%. Furthermore, the storage time at a semi-low temperature performed the stability and maintain the structure of emulsions.  相似文献   

6.
Emulsions prepared with whey proteins, phospholipids and 10% of vegetable oil were used for a model typifying dressings, coffee whitener and balanced diets. For the present study, two whey proteins (partial heat-denatured whey protein concentrate (WPC) and undenatured whey protein isolate (WPI)) in combination with different phospholipids (hydrolysed and unmodified deoiled lecithin) were chosen to investigate the interactions between proteins, phospholipids and salt (sodium chloride) in such emulsion systems. Oil-in-water (o/w) emulsions (10 wt.% sunflower oil) containing various concentrations of commercial whey proteins (1-2%), phospholipids (0.39-0.78%) and salt (0.5-1.5%) were prepared using a laboratory high pressure homogeniser under various preparation conditions. Each emulsion was characterised by droplet size, creaming rate, flow behaviour and protein load. The dynamic surface activity of the whey proteins and lecithins at the oil-water interface was determined using the drop volume method. The properties of emulsions were significantly influenced by the content of whey protein. Higher protein levels improved the emulsion behaviour (smaller oil droplets and increased stability) independent of the protein or lecithin samples used. An increase of the protein content resulted in a lower tendency for oil droplet aggregation of emulsions with WPC to occur and emulsions tending towards a Newtonian flow behaviour. The emulsification temperature was especially important using the partial heat-denatured WPC in combination with the deoiled lecithin. A higher emulsification temperature (60 degrees C) promoted oil droplet aggregation, as well as an increased emulsion consistency. Emulsions with the WPC were significantly influenced by the NaCl content, as well as the protein-salt ratio. Increasing the NaCl content led to an increase of the droplet size, higher oil droplet aggregation, as well as to a higher creaming rate of the emulsions. An increase of the lecithin content from 0.39 to 0.78% in the emulsion system resulted in a small reduction of the single droplet size. This effect was more pronounced when using the hydrolysed lecithins.  相似文献   

7.
Equal ratios of medium chainlength triglycerides and water were emulsified with 5% w/w of mixed nonionic surfactants with various hydrophilic-lipophilic balance (HLB) values. The HLB numbers ranged from 15 to 6.6. Emulsifiers with HLB numbers 15, 14.2, 13.3, and 12.5 produced low viscosity milk-like liquid, 11.6, 10.8, 10, and 9.1 produced cream, 8.3 and 7.4 produced paste like consistency, and 6.6 produced a coarse emulsion. The effects of HLB on stability, particle size, and rheological properties were studied. Emulsifiers with intermediate HLB numbers produced emulsions that are stable for 30 days at room temperature but a thin layer of oil on top of the emulsion was observed at 45°C. The thin oil layer can be redispersed with mild agitation without loss of stability. Emulsifiers with high and low HLB number (15, 14.2, 13.3, 6.6) produced emulsions that were unstable at both storage conditions. The stability of the emulsions correlate well with the particle size. The curve flow plot for most of the emulsions fit the Herschel Bulkley model. They exhibit a pseudoplastic type behavior. Emulsifiers with different HLB numbers also affect the shear stress at zero shear, τ0, and the yield value, τ.  相似文献   

8.
To study the effect of hydrophobic modification of the emulsifier on the relationship between emulsion stability and polymer emulsifier concentration, silicone oil emulsions were prepared using hydroxypropyl methylcellulose (original HPMC) and HPMC stearoxy ether (hydrophobic HPMC) at concentrations around their overlap concentrations. Both HPMC types completely emulsified the silicone oil. However, the volume fraction of silicone oil in the emulsion prepared using hydrophobic HPMC was less than that that by the original HPMC, and the average oil droplet size in the former emulsion was less than that in the latter emulsion. Increasing HPMC concentration led to increase in both the amount of adsorbed polymer emulsifier and the storage moduli in the linear region, irrespective of which HPMC was used. Stress-strain sweep curves obtained by a rheo-optical method showed that emulsions stabilized by the hydrophobic HPMC flowed slowly, even beyond the yield stress, whereas emulsions prepared using the original HPMC flowed quickly beyond the yield stress. The storage moduli of the emulsions prepared by the hydrophobic HPMC were larger than those prepared using the original HPMC.  相似文献   

9.
The formation of heavy crude oil in water (O/W) emulsion by a low energy laminar controlled flow has been investigated. The emulsion was prepared in an eccentric cylinder mixer. Its geometry allows the existence of chaotic flows that are able to mix well highly viscous fluids. This new mixer design is used to produce high internal phase ratio emulsions for three oils: castor oil and two heavy crude oils of different initial viscosity (Zuata and Athabasca crude oils). The influence of the stirring conditions, geometrical parameters, and water volume fraction on the rheological properties of the resulting O/W emulsion is studied.  相似文献   

10.
A gel emulsion with high internal oil phase volume fraction was formed via an inversion process induced by a water–oil ratio change. The process involved the formation of intermediate multiple emulsions prior to inversion. The multiple emulsions contain a liquid crystal formed by the surfactant with water; this was both predicted by the equilibrium phase diagram as well as observed using polarization microscopy. These multiple emulsions were more stable compared to alternative multiple emulsions prepared in the same way with a surfactant that does not form liquid crystals. While the formation of a stable intermediate multiple emulsion may not be a necessary condition for the inversion to occur, the transitional presence of a liquid crystal proved to be a significant factor in the stabilization of the intermediate multiple emulsions. The resulting gel emulsion contained a small fraction of the liquid crystal according to the phase diagram, and it exhibited excellent stability.  相似文献   

11.
To study the relationship between emulsion stability and polymer emulsifier concentration, the preparation of paraffin oil emulsions by hydroxypropyl methylcellulose (HPMC) was carried out with HPMC concentrations below the overlapping concentration (C(*)) of HPMC. The stability of the emulsions incorporating HPMC was investigated by measuring the creaming velocity, volume fraction of emulsified paraffin oil, oil droplet size, and some rheological responses such as the stress-strain sweep curve and strain and frequency dependences of dynamic viscoelastic moduli. The paraffin oil was almost emulsified by HPMC above C(*)/20: the volume fraction of paraffin oil in the emulsion was higher than 0.72. Increasing in the HPMC concentration led to decreases in both the average oil droplet size and creaming velocity and an increase in the yield stress. All emulsions behaved as solid-like viscoelastic matter. Additionally, the measured dynamic storage moduli were compared with those calculated from a relationship based on functions of the volume fraction of oil in the emulsions and Laplace pressure; good agreement between the measured and calculated moduli was obtained. On the other hand, at HPMC concentrations below C(*)/50, the emulsified paraffin oil became unstable and the oil and the HPMC solution eventually separated.  相似文献   

12.
Systemic experiments have been conducted to investigate the effect of drop sizes on the rheology of water-in-oil (W/O) emulsions. Three sets of emulsions with different average drop sizes were first prepared and then the corresponding rheologies were determined using a concentric viscometer. Results indicated that the flow behavior of concentrated emulsions changes qualitatively from Newtonian flow to non-Newtonian flow with shear rates. In Newtonian flow regime, a smaller drop size leads to a higher viscosity, and the increments are more pronounced at high dispersed phase volume fractions. Two local remarkable increases of the emulsion viscosity with dispersed phase volume fractions correspond to the percolation and glass-transition, respectively. In non-Newtonian flow regime, emulsions show shear-thinning behavior and can be fitted well by the power law model. For emulsions with volume fractions between 0.132 and 0.325, the flow index and consistency constant show power law relationship with the water content. Furthermore, the shear-thinning effect becomes stronger in the emulsions with smaller drop sizes. A correlation has been successfully developed for determining the clusters’ sizes in W/O emulsions and shows excellent agreement with the experimental data. As a consequence, a microscopic understanding (cluster level) was presented for the shear-thinning behavior of the emulsions in this study.  相似文献   

13.
Temperature- and pH-sensitive microgels from cross-linked poly(N-isopropylacrylamide)-co-methacrylic acid are utilized for emulsion stabilization. The pH- and temperature-dependent stability of the prepared emulsion was characterized. Stable emulsions are obtained at high pH and room temperature. Emulsions with polar oils, like 1-octanol, can be broken by either addition of acid or an increase of temperature, whereas emulsions with unpolar oils do not break upon these stimuli. However, complete phase separation, independent of oil polarity, can be achieved by successive acid addition and heating. This procedure also offers a way to recover and recycle the microgel from the sample. Interfacial dilatational rheology data correlate with the stimuli sensitivity of the emulsion, and a strong dependence of the interfacial elastic and loss moduli on pH and temperature was found. The influence of the preparation method on the type of emulsion is demonstrated. The mean droplet size of the emulsions is characterized by means of flow particle image analysis. The type of emulsion [water in oil (w/o) or oil in water (o/w)] depends on the preparation technique as well as on the microgel content. Emulsification with high shear rates allows preparation of both w/o and o/w emulsions, whereas with low shear rates o/w emulsions are the preferred type. The emulsions are stable at high pH and low temperature, but instable at low pH and high temperature. Therefore, we conclude that poly(N-isopropylacrylamide)-co-methacrylic acid microgels can be used as stimuli-sensitive stabilizers for emulsions. This offers a new and unique way to control emulsion stability.  相似文献   

14.
The stability of oil-in-water emulsions prepared using dextran, a natural polysaccharide, hydrophobically substituted with phenoxy groups, was studied. The evolution of the emulsion droplet size was investigated as a function of polymer concentration (Cp=0.2 to 1% w/w in a water phase) and the degree of phenoxy substitution (tau=4.2 to 15.7%). For the highest tau values, emulsions, which presented submicrometer droplets, were stable over more than 4 months at room temperature. The most substituted polymers clearly showed a better efficiency to lower the surface tension at the oil/water interface. DexP did not induce real viscosification of the continuous phase. The linearity of the particle volume variation with time, and the invariability of the volume distribution function, proved that Ostwald ripening was the main destabilization mechanism of the phenoxy dextran emulsions. The nature of the oil dispersed phase drastically affected the behavior of emulsions. While the emulsions prepared with n-dodecane presented a particle growth with time, only few size variations occurred when n-hexadecane was used. Furthermore, small ratios of n-hexadecane in n-dodecane phase reduced the particle growth due to the lower solubility and lower diffusion coefficient in water of n-hexadecane, which acted as a ripening inhibitor.  相似文献   

15.
This paper aims to develop a mathematical model to predict the wax deposition rate of waxy crude emulsions, combining heat and mass transfer mechanisms. According to the flow loop experimental results, the wax deposition rate increases with the decreasing average temperature of oil/wall in a manner of linear regularity, and shows a downtrend with the increase of water cut due to diffusion resistance. An applicable model is developed regarding emulsion properties, radial temperature gradient, shear stress, and wax diffusion coefficient. In model validation, the prediction results are in good agreement with experimental data with the relative errors within 28.87%.  相似文献   

16.
A study of the emulsification of silicone oil and water in the presence of partially hydrophobic, monodisperse silica nanoparticles is described. Emulsification involves the fragmentation of bulk liquids and the resulting large drops and the coalescence of some of those drops. The influence of particle concentration, oil/water ratio, and emulsification time on the relative extents of fragmentation and coalescence during the formation of emulsions, prepared using either batch or continuous methods, has been investigated. For batch emulsions, the average drop diameter decreases with increasing particle concentration as the extent of limited coalescence is reduced. Increasing the oil volume fraction in the emulsion at fixed aqueous particle concentration results in an increase in the average drop diameter together with a dramatic lowering of the uniformity of the drop size distribution as coalescence becomes increasingly significant until catastrophic phase inversion occurs. For low oil volume fractions (phi(o)), fragmentation dominates during emulsification since the mean drop size decreases with emulsification time. For higher phi(o) close to conditions of phase inversion, coalescence becomes more prevalent and the drop size increases with time with stable multiple emulsions forming as a result.  相似文献   

17.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

18.
Adsorption of sodium dodecylbenzene sulfonate (NaDBS) on the surfaces of dispersed oil globules during homogenization of paraffin oil in water emulsions has been studied. NaDBS concentration was changed over a wide interval comprising critical micelle concentration. For the emulsions homogenized for different time intervals the total quantity and the percentage of NaDBS adsorbed, the amount and number of NaDBS molecules adsorbed per unit inter-facial area, as well as the specific surface area of dispersed phase and the area per emulsifier molecule have been determined.

The amount adsorbed and density of the emulsifier layer, I.e., the area per NaDBS molecule adsorbed on the oil globule surfaces, depend not only on Initial NaDBS concentration but also, on the homogenization time and the homogenization action. This makes a difference between the adsorption behaviour under the conditions of emulsion formation and its subsequent homogenization, and the adsorption behaviour of the emulsifier at a plane quiescent Interface.  相似文献   

19.
The present paper proposes the emulsification of weathered crude oils in water as a competitive and cost effective method for reducing their viscosities. Weathered crude oil samples were collected from major Kuwaiti oil lakes. Emulsion preparation involved using, either a nonionic surfactant or alkali, as well as both alkali and fatty acid. The obtained emulsions were characterized by measuring the droplet size distribution of the dispersed phase using optical microscopy. Emulsion stability was also examined in terms of the system breakdown. The rheological properties were measured using a concentric cylinder rotary rheometer. The emulsion rheological behavior has been studied as a function of composition, temperature, and shear rate. A constitutive model was developed to characterize the pseudoplastic behavior of the crude oil and the emulsion systems. The model fitted well the experimental results with a correlation coefficient higher than 95%. Associated with the pseudoplastic behavior, viscoelastic behavior has been observed with emulsions and some oils at high shear rates.

The results of this investigation indicated that the examined weathered crude oils can be transported through pipelines as emulsions of up to 80 vol.% oil concentrations. The proposed method of treatment with NaOH and oleic acid offers several advantages over the surfactant treatment. It exhibited comparable rheological behavior at lower cost and less mixing energy. It also provided higher emulsion stability, which favors oil transportation for longer distances.  相似文献   

20.
Changes in the rheological properties of a model concentrated oil-in-water emulsion stabilized with globular protein (bovine serum albumin) upon the addition of nonionic surfactant polyoxyethylene (20) sorbitan monooleate (Tween 80) are studied. Non-Newtonian behavior is typical of the emulsions in question; moreover, they are characterized by the existence of yield stress. At stresses above the yield stress, the viscosity drops not immediately but after the intermediate Newtonian region at the flow curve. For all systems studied, the total flow curve is exhibited with the minimum Newtonian viscosity that is adequately described by the Cross formula. An increase in the Tween 80 concentration leads to a decrease in the viscosity of emulsion. Two threshold phenomena on the concentration dependences of rheological properties are revealed: at low concentration of added nonionic surfactant, the yield stress drops abruptly, whereas the viscosity lowers considerably with an increase in surfactant concentration to 1 × 10?3 mol/l and the emulsion becomes unstable. The effects observed can be explained by the gradual displacement of high-molecular-weight stabilizer from interfacial layers and its replacement by nonionic surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号