首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epitaxial [NiFe/Cu/Co(/Cu)] films have been grown on Si(100)/Cu substrates using an ultrahigh vacuum evaporation method. Magnetoresistance (MR) and magnetization were measured at room temperature with maximum applied field, 40 kA/m. The (100) oriented [NiFe(3 nm)/Cu(6 nm)/Co(3 nm)/Cu(6 nm)] × 10 multilayers showed a sharply peaked MR curve (when the external field was applied along [011] direction) due to magnetization rotation of free NiFe layers separated from Co layers with thick Cu layers. Furthermore the interposition of a Ag layer in the Cu layer reduced the couplings between ferromagnetic layers and improved the sensitivity of the [NiFe/Cu/Co(/Cu)] film. Si(100)/Cu(5 nm)/[Co(3 nm)/Cu(2.4 nm)/Ag(0.2 nm)/Cu(2.4 nm)/NiFe(3 nm)/Cu(2.4 nm)/Ag(0.2 nm)/Cu(2.4 nm)] × 10 multilayers showed a resistivity change of about 8.2% per kA/m (12 Oe).  相似文献   

2.
The magnetic properties of Au/Ni/Si(100) films with Ni thicknesses of 8–200 Å are studied at T=77 K using a scanning magnetic microscope with a thin-film high-temperature dc SQUID. It is found that the Ni films, with an area of 0.6×0.6 mm, which are thicker than 26 Å have a single-domain structure with the magnetic moment oriented in the plane of the film and a saturation magnetization close to 0.17 MA/m. For films less than 26 Å thick, the magnetization of the film is found to drop sharply.  相似文献   

3.
(100) oriented FeCr and FeV films, 1000 Å thick, have been deposited on (100)Si using (100)Pd/Cu seed layers. Three compositions are made for each alloy, 75/25, 50/50 and 25/75, all show lattice spacings corresponding to a body-centered cubic structure. Magnetic measurement shows composition dependent magnetization: both FeCr and FeV with compositions of 75/25 and 50/50 are ferromagnetic, but not the ones with the composition of 25/75. In-plane magnetization along different crystalline axes shows the same crystalline anistropy as that of bulk Fe crystal for both 75/25 structures, with a higher magnetization along the [100] edge than the [110] one. For the 50/50 structures, the [100] edge shows a smaller magnetization at low fields than the [110] one, but exceeds the latter at higher field. The measured magnetizations are less than those from linearly diluted Fe lattices. The correlation between the structures and magnetic properties is discussed.  相似文献   

4.
200-nm-thick Ni films in an epitaxial Cu/Ni/Cu/Si(001) structure are expected to have an in-plane effective magnetic anisotropy. However, the in-plane remanence is only 42%, and magnetic force microscopy domain images suggest perpendicular magnetization. Quantitative magnetic force microscopy analysis can resolve the inconsistencies and show that (i) the films have perpendicular domains capped by closure domains with magnetization canted at 51 degrees from the film normal, (ii) the magnetization in the Bloch domain walls between the perpendicular domains accounts for the low in-plane remanence, and (iii) the perpendicular magnetization process requires a short-range domain wall motion prior to wall-magnetization rotation and is nonhysteretic, whereas the in-plane magnetization requires long-range motion before domain-magnetization rotation and is hysteretic.  相似文献   

5.
The current interest in GaAs grown on nonpolar substrates such as Si has been stimulated by the potential technological advantages of this system. Although the two major obstacles impeding the progress of heteroepitaxial growth of GaAs on Si (100) substrates, the large lattice mismatch and the formation of antiphase boundaries, have recently been overcome, the understanding of the microstructural growth process is still not satisfactory. We are presenting new x-ray scattering results which indicate that thin GaAs films are compressed in the film plane at room temperature, while thicker films are under tensil stress, the cross-over region being at about 1000Å. In addition, we show that the GaAs lattice is translationally incommensurate with the Si substrate and that the in-plane [001] axes are misaligned by 3–5°. Thermal expansion measurements of the out-of-plane lattice parameters of the film and substrate indicate that the GaAs in-plane thermal expansion follows from the anharmonicity of the substrate.  相似文献   

6.
The magnetization reversal of Fe/Cu(100) ultrathin films grown at room temperature is investigated by using an in situ magneto-optical Kerr effect polarimeter with a magnet that can rotate in a plane of incidence. There occur spin reorientation transitions from out-of-plane to in-plane magnetizations in 8 and 12 monolayers (ML) thick iron films. The coercive fields are observed to be proportional to the reciprocal of the cosine with respect to the easy axis, suggesting that the domain-wall displacement plays a main role in the magnetization reversal process.  相似文献   

7.
By repeated deposition of several Å of Ni below 100 °C and subsequent annealing to typically 350 °C, thin continuous NiSi2-layers have been grown epitaxially on Si (111). Thicknesses exceeding ∼- 70 Å require a different procedure due to the increasing importance of lateral growth, spoiling the layer quality. We show that MBE at substrate temperatures above 500 °C is not a viable technique to increase the thickness of the ultrathin layers. The reason is found to lie in the insufficient stability of the NiSi2 templates, disintegrating into islands at temperatures above 500 °C. Perfectly smooth layers up to 1000 Å have, however, been grown by a new method in which alternate layers of Ni and Si (typically 1 Å and 4 Å respectively) are deposited onto the initial template at substrate temperatures between 350 °C and 380 °C.  相似文献   

8.
利用射频磁控共溅射方法,在Si衬底上制备了Ni88Cu12薄膜,并且研究了膜厚以及真空磁场热处理温度对畴结构和磁性的影响. X射线衍射结果表明热处理后的薄膜晶粒长大,扫描电子显微镜结果发现不同热处理温度下薄膜表现出不同的形貌特征.热处理前后的薄膜面内归一化磁滞回线结果显示,经过热处理的Ni88Cu12薄膜条纹畴形成的临界厚度降低,未热处理的Ni88Cu12薄膜在膜厚为210 nm时出现条纹畴结构,而经过300℃热处理的Ni88Cu12薄膜在膜厚为105 nm就出现了条纹畴结构.高频磁谱的结果表明,随着热处理温度的增加, Ni88Cu12薄膜的共振峰会有小范围的移动.  相似文献   

9.
Although the spin-reorientation transition from out-of-plane to in-plane in Fe/Si film is widely reported, the tuning of in-plane spin orientation is not yet well developed. Here, we report the thickness-, temperature- and Cu-adsorptioninduced in-plane spin-reorientation transition processes in Fe/Si(557) film, which can be attributed to the coexistence of two competing step-induced uniaxial magnetic anisotropies, i.e., surface magnetic anisotropy with magnetization easy axis perpendicular to the step and volume magnetic anisotropy with magnetization easy axis parallel to the step. For Fe film thickness smaller than 32 monolayer(ML), the magnitudes of two effects under various temperatures are extracted from the thickness dependence of uniaxial magnetic anisotropy. For Fe film thickness larger than 32 ML, the deviation of experimental results from fitting results is understood by the strain-relief-induced reduction of volume magnetic anisotropy.Additionally, the surface and volume magnetic anisotropies are both greatly reduced after covering Cu capping layer on Fe/Si(557) film while no significant influence of Na Cl capping layer on step-induced magnetic anisotropies is observed.The experimental results reported here provide various practical methods for manipulating in-plane spin orientation of Fe/Si films and improve the understanding of step-induced magnetic anisotropies.  相似文献   

10.
Surface magneto-optical Kerr effect (SMOKE) magnetometry in the temperature range 10–300 K was exploited to investigate the magnetic properties of high-quality Cu/Ni/Cu/Si(1 1 1) epitaxial heterostructures with thickness of the Ni layer, dNi, between 10 and 60 Å. For a fixed temperature, the equilibrium direction of the magnetization is parallel or perpendicular to the film surface, depending on the Ni thickness, because of the competition among shape anisotropy, magnetoelastic anisotropy and interface anisotropy. No reorientation of the magnetization could be observed as a function of temperature, for any of the specimens analyzed, while a large variation of the loop squareness and coercivity was found. This last variation has been qualitatively explained using a theoretical model based on a Green's function technique, valid for a monodomain film with a coherent rotation of the magnetization.  相似文献   

11.
Magnetic stripe domains in the spin reorientation transition region are investigated in (Fe/Ni)/Cu(001) and Co/Cu/(Fe/Ni)/Cu(001) using photoemission electron microscopy. For (Fe/Ni)/Cu(001), the stripe domain width decreases exponentially as the Fe/Ni film approaches the spin reorientation transition point. For Co/Cu/(Fe/Ni)/Cu(001), the Fe/Ni stripe orientation is aligned with the Co in-plane magnetization, and the stripe domain width decreases exponentially with increasing the interlayer coupling between the Fe/Ni and Co films. By considering magnetic stripes within an in-plane magnetic field, we reveal a universal dependence of the stripe domain width on the magnetic anisotropy and on the interlayer coupling.  相似文献   

12.
自旋转向相变中的条纹磁畴研究   总被引:1,自引:0,他引:1  
吴义政 《物理》2005,34(2):104-108
用光激发电子显微镜研究了Fe/Ni铁磁膜和Co/Cu/Fe/Ni磁耦合膜中的条纹磁畴.实验发现:在Fe/Ni体系中,条纹磁畴宽度随着铁层厚度趋近于自旋转向相变点呈指数下降;在Co/Cu/Fe/Ni体系中,Fe/M层中的条纹磁畴会沿着钴层磁矩的方向排列,其磁畴宽度会随着Co-Fe/Ni间的层间耦合强度呈指数下降.理论上推导出条纹磁畴随着磁各向异性能和层间耦合强度变化的统一公式,而实验结果与理论符合得非常好。  相似文献   

13.
吴义政 《物理》2005,34(02):104-108
用光激发电子显微镜研究了Fe/Ni铁磁膜和Co/Cu/Fe/Ni磁耦合膜中的条纹磁畴. 实验发现:在Fe/Ni体系中,条纹磁畴宽度随着铁层厚度趋近于自旋转向相变点呈指数下降;在Co/Cu/Fe/Ni体系中,Fe/Ni层中的条纹磁畴会沿着钴层磁矩的方向排列,其磁畴宽度会随着Co-Fe/Ni间的层间耦合强度呈指数下降. 理论上推导出条纹磁畴随着磁各向异性能和层间耦合强度变化的统一公式,而实验结果与理论符合得非常好.  相似文献   

14.
The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM). Owing to the significant modification of the energy surface in remanent state by slight misorientation from (111) plane and a uniaxial magnetic anisotropy, the azimuthal angular dependence of in-plane resonance field shows a six-fold symmetry with a weak uniaxial contribution, while the remanence of hysteresis loops displays a two-fold one. The competition between the first and second magnetocrystalline anisotropies may result in the switching of in-plane easy axis of the system. Combining the FMR and VSM measurements, the magnetization reversal mechanism has also been determined.  相似文献   

15.
Magnetic anisotropy between in-plane and out of plane magnetic alignments is studied in a variety of multilayer systems using Mössbauer spectrosopy to observe the (Fe) magnetic orientation. The surface anisotropy in Fe/Au (1 1 1) multilayers is measured as K s = 0.9 × 10?3 Jm?2. In Fe/Ni multilayers the dependence of magnetic orientation on external field applied normal to the layers enables volume and interface anisotropies K v = (?5 ± 1) × 104 Jm?3 and K s = (?0.6 ± 0.4)× 10?3 Jm?2 to be evaluated. In similar applied field experiments coherent rotation of the magnetic Fe and NiFe layers in Fe/Cu/NiFe/Cu multilayers was observed for intervening Cu layer thickness x = 5 Å but independent rotation for x = 50 Å. Out of plane magnetic components are observed for DyFe2, YFe2 thin films and DyFe2/YFe2 multilayers. In fields of up to 0.25 T applied inplane only the moments of the YFe2 film showed significant rotation.  相似文献   

16.
The surface magneto-optic Kerr effect (SMOKE) technique was used to search for ferromagnetism in monolayer-range films of Cr and Fe grown on Au(100) and Cu(100). The growth modes were characterized using low energy electron diffraction (LEED) and Auger electron spectroscopy. The fcc structure of Cr could not be stabilized on Cu(100). Ferromagnetism was not observed for the Cr/Au(100) films at temperature above 100 K. Ferromagnetism also was not observed for fcc Fe/Cu(100) grown at room temperature; but for growth at >150°C, a ferromagnetic, metastable state was observed for the top layer of the Fe film, in the absence of bulk ferromagnetism. The ferromagnetic Fe/Au(100) system was used to establish the sensitivity of the approach.  相似文献   

17.
Mutually insoluble Fe/Cu multilayered films prepared by a dc-magnetron sputtering system with a rotating substrate-holder have been studied. The periodicity of the multilayers was confirmed by X-ray diffraction. The results of magnetization measurements and Mössbauer spectroscopy at 300 and 77 K show that the samples with the Fe layer thinner than 9 Å exhibit superparamagnetism. The temperature dependence of the spontaneous magnetization follows Bloch's law for all samples, with the spin-wave temperature coefficient B inversely proportional to the thickness of the Fe layer. The results of torque measurements show that the magnetization is normal to the film plane for the samples with the Fe layer thinner than 6 Å.  相似文献   

18.
《Surface science》1987,182(3):477-488
Iron was epitaxially grown on a Cu(100) surface. Low energy electron diffraction (LEED) intensity versus energy curves were recorded for 1 and 10 layers of iron on Cu(100) at room temperature. A full dynamical analysis was performed using the renormalized forward scattering perturbation method. The surface Debye temperatures were determined to be 233 K for 1 ML Fe and 380 K for 10 layers of Fe. The value obtained for fcc iron was 550 K. A multiple relaxation approach was employed in analyzing the experimental data. The estimated interlayer spacings for the first and second layers were 1.78±0.02 Å (first) and 1.81±0.02 Å (second) for 1 ML Fe, and 1.81±0.02 Å (first) and 1.78±0.02 Å (second) for 10 layers of Fe on Cu(100). Auger electron spectroscopy was used to determine the thickness of the Fe films, and the LEED measurements indicate approximately a layer-by-layer growth until about 17 layers at room temperature. At higher temperatures there is evidence of iron diffusion or copper surface segregation.  相似文献   

19.
Fe/Al thin film multilayers, differing in the thickness of Fe films (30÷10 Å, were electron-beam evaporated in ultra-high vacuum. Interdiffusion and reaction phenomena occurring during deposition at interfaces were studied by means of conversion electron Mössbauer spectroscopy and Auger electron spectroscopy depth-profiling. Magnetic behavior was investigated by alternating force gradient magnetometry. The formation of Fe–Al solid solution and intermetallic compound is observed. Multilayers are ferromagnetic with magnetization in the film plane for iron film thickness ?15 Å, while exhibiting a superparamagnetic behavior at 10 Å.  相似文献   

20.
Polycrystalline thin Ni films deposited onto GaAs (0 0 1) show a transition of the magnetic anisotropy depending on its thickness. The anisotropy is perpendicular to the film plane for the thicknesses of the film ⩽12 nm. This becomes in-plane in the films having thicknesses ⩾15 nm. The films are deposited onto the n-type GaAs (0 0 1) substrate by the usual thermal evaporation method and also by the electron beam evaporation in ultra high vacuum onto a GaAs epilayer in the standard molecular beam epitaxy system. The magnetization and ferromagnetic resonance (FMR) are observed in the temperature range from 4.2 to 300 K. For the discussion of the microscopic origin of the anomalous properties in magnetization and FMR experiments, the experimental results are reviewed by introducing a uniaxial anisotropy, which is calculated from the easy-axis and hard-axis magnetization data. This calculated anisotropy is able to explain the temperature and angle dependency of the FMR spectra of the Ni films. Hence the magnetization and FMR spectra are in agreement with the type of the anisotropy and its temperature dependency. In addition to these, the temperature dependence of the in-plane magnetic anisotropy is able to explain the previously reported anomalous effect of reducing the squareness at low temperatures in Ni/GaAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号