首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical behavior of resveratrol was studied in Britton‐Robinson (B‐R) buffer solution (pH = 4.0) at glassy carbon electrode (GCE) using cyclic voltammetry (CV). Resveratrol showed an irreversible anodic peak at 0.570 V which was involving one electron and one proton. Also, the interaction of resveratrol with double‐stranded fish sperm DNA was investigated by linear sweep voltammetry (LSV) and UV‐vis spectra. The results showed that peak potentials shifted to more positive value and peak currents decreased in electrochemical experiment and the maximum absorption decreased with red shift in UV‐vis spectra experiment with the addition of DNA, indicating the resveratrol interacted with DNA by intercalating into the double helix of DNA. Besides, the binding of resveratrol with DNA, analyzed in terms of the cooperative Hill model, yields the association constant Ka = 3.18 × 105 and a Hill coefficient m = 1.06.  相似文献   

2.
Trnková L 《Talanta》2002,56(5):887-894
Electrochemical characteristics of native and denatured calf thymus DNA have been studied by voltammetry on a silver electrode (AgE). Experimental results obtained from linear sweep or cyclic voltammetry (LSV or CV) have been employed in elimination voltammetry. The elimination voltammetry with linear scan (EVLS), using the linear combination of the total currents measured at different scan rates, enables one or two selected particular currents to be eliminated. The best results have been obtained by using a function eliminating the kinetic and charging currents (I(k),I(c)), and conserving the diffusion current (I(d)). This function makes it possible to increase significantly voltammetric signals of native and denatured DNAs, and to reveal processes not detectable by conventional electrochemical methods. The influence of electrochemical pretreatment of silver electrode surfaces and of starting and switching potentials on DNA voltammetric signals have been discussed. Silver electrodes coupled with elimination voltammetry represent promising tools for developing new nucleic acids biosensors.  相似文献   

3.
In this article, we report on efforts to construct a high sensitive electrochemical sensor with immobilized sandwich‐type DNA borne ferrocene (Fc) head for sequence‐specific DNA detection using ultramicroelectrode and low current voltammetry. Based on the difference in deformability between the bending rigid complementary DNA double helix and its anomalous flexile mismatches, the fully complementary target can be distinguished from mismatched targets including the single‐base mismatched target. Detection limit estimated as the amount of DNA is observed to be 100 fM via low current voltammetry. The method offers great promise of high sensitivity and selectivity simultaneously for effective gene identification.  相似文献   

4.
The structure and biological function of the DNA double helix are based on interactions recognizing sequence complementarity between two single strands of DNA. A single DNA strand can also recognize the double helix sequence by binding in its groove and forming a triplex. We now find that sequence recognition occurs between intact DNA duplexes without any single-stranded elements as well. We have imaged a mixture of two fluorescently tagged, double helical DNA molecules that have identical nucleotide composition and length (50% GC; 294 base pairs) but different sequences. In electrolytic solution at minor osmotic stress, these DNAs form discrete liquid-crystalline aggregates (spherulites). We have observed spontaneous segregation of the two kinds of DNA within each spherulite, which reveals that nucleotide sequence recognition occurs between double helices separated by water in the absence of proteins, consistent with our earlier theoretical hypothesis. We thus report experimental evidence and discuss possible mechanisms for the recognition of homologous DNAs from a distance.  相似文献   

5.
《Analytical letters》2012,45(10):1742-1750
Abstract

Proflavine binds with DNA in a complicated manner. This work involves the electrochemical study of this interaction using differential pulse voltammetry at a carbon paste electrode (CPE) and alternating current voltammetry at a hanging mercury drop electrode (HMDE). At the CPE the peak current intensity at 1.0 V (corresponding to the oxidation of the guanine residues) decreased by increasing the concentration of proflavine. At the HMDE, a decrease in the current intensity of the DNA peak at ? 1.2 V (corresponding to segmental desorption) was also observed by increasing the concentration of proflavine. These results confirmed, electrochemically, that proflavine intercalates within the DNA double helix and changes its conformation.  相似文献   

6.
This work involves the electrochemical study of the interaction of SYBR Green I (SG) with native DNA using differential pulse voltammetry at a carbon paste electrode (CPE) and alternating current voltammetry at a hanging mercury drop electrode (HMDE). At the CPE the peak current intensity at 1.0 V decreased by increasing the concentration of SG. At the HMDE, a decrease in the current intensity of the DNA peak at −1.2 V was also observed by increasing the concentration of SG. These results electrochemically confirmed that SG intercalates within the DNA double helix and changes its conformation. Through the present work the differentiation of differently methylated analytes was achieved by application of alternative current and differential pulse voltammetric techniques. Amplicons (PCR products) corresponding to the GC-rich p53 exon 5 containing cytosine and its methylated analogue, synthesized by substituting 60% of cytosine by 5-methyl-cytosine, were amplified and investigated electrochemically in the presence of SG and ethidium bromide (EtBr) by differential pulse voltammetry. Considerable peak current differences were observed in the presence of SG and EtBr for unmethylated exon 5 vs. methylated. Therefore, both SG and EtBr could serve as electrochemical probes for identifying different DNA conformations.  相似文献   

7.
儿茶酚胺衍生物与DNA之间相互作用的光谱和电化学法研究   总被引:11,自引:0,他引:11  
用光谱和电化学方法研究了儿茶酚胺衍生物与小牛胸腺DNA之间的作用机制.结果表明,低浓度的多巴酚丁胺和肾上腺素与DNA之间主要为静电作用;而在高浓度时,则主要为插入作用.对于多巴胺,在5.00×10-5~9.00×10-4mol/L范围内,它与DNA之间主要为插入作用.同时,采用电化学方法测得多巴胺、肾上腺素和多巴酚丁胺与DNA之间的表观结合常数分别为1.55×103,9.77×103和1.74×104L/mol.  相似文献   

8.
Boron-doped diamond (BDD) electrodes have been examined for the electrochemical oxidation of underivatized-nucleic acids in terms of single stranded and double stranded DNA. Cyclic voltammetry and square wave voltammetry have been used to study the oxidation reactions and to detect DNA without derivatization or hydrolysis steps. At the diamond electrode, at least two well-defined voltammetric peaks were observed for both single stranded and double stranded DNA. Diamond electrode is the first material to show a well-defined voltammetric peaks for adenine group oxidation directly in the helix structure of nucleic acid due to its wide potential window. For single stranded DNA, a third peak, related to the pyrimidine group oxidation was also observed. As-deposited diamond film with predominantly hydrogen-terminated surface exhibited superior performance over oxygen-terminated diamond in terms of sensitivity. However, by optimizing the ionic strength, sensitivity of O-terminated films could be improved. Linear calibration results have shown linearity of current with concentration in the range 0.1-8 microg mL(-1) for both guanine and adenine residues at as-deposited BDD. Detection limits (S/N = 3) of 3.7 and 10 ng mL(-1) for adenine and guanine residue in single stranded DNA, respectively, and 5.2 and 10 ng mL(-1) for adenine and guanine residue in double stranded DNA, respectively, were observed. This work shows the promising use of diamond as an electrochemical detector for direct detection of nucleic acids. The results also show the possibility of using the oxidation peak current of adenine group that is more sensitive for the direct detection of nucleicacids.  相似文献   

9.
《Electroanalysis》2005,17(11):997-1002
Binding reactions of toluidine blue (TB) with herring fish DNA in pH 6.0 Britton–Robinson (B–R) buffer solution have been investigated by cyclic voltammetry and linear‐sweep voltammetry at a glassy carbon electrode. TB has a couple of well‐defined redox peaks. The addition of DNA into the TB solution resulted in the decrease of the redox‐peak currents and the shift negatively of the anodic peak potential. The values of the electrochemical parameters such as the electron number of the electrochemical reaction, the electron transfer coefficient and the electrochemical reaction standard rate constant in the absence and presence of DNA, as well as the values of binding constant and binding ratio of DNA with TB were obtained. Almost unchanged values of the electrochemical parameters in the absence and presence of DNA show that nonelectroactive complexes were formed when TB interacted with DNA. DNA concentration can be determined by the decrease of the peak current of TB. The binding mode of TB with DNA was discussed.  相似文献   

10.
In the field of DNA sensing, DNA hybridisation detection is generally performed by fluorescence microscopy. However, fluorescence instrumentation is difficult to miniaturise in order to produce fully integrated DNA chips. In this context, electrochemical detection of DNA hybridisation may avoid this limitation. Therefore, the use of DNA intercalators is particularly attractive due to their selectivity toward DNA double strand enabling DNA labelling without target chemical modification and, for most of them, to their electroactivity. We have synthesized a pyridoacridone derivative dedicated to DNA hybridisation electrochemical-sensing which presents good electrochemical reversibility, electroactivity at mild potentials and specificity toward DNA double strand. The electrochemical behaviour of this molecule has been assessed using cyclic voltammetry (CV). DNA/intercalator interactions were studied by differential pulse voltammetry (DPV) before application to hybridisation detection onto DNA sensors based on polypyrrole modified electrodes.  相似文献   

11.
A temperature-dependent interaction of neutral red with calf thymus DNA   总被引:1,自引:0,他引:1  
Neutral red (NR) is used as a probe to study the temperature and concentration dependent interaction of a cationic dye with nucleic acid. A temperature-dependent interaction of NR with calf thymus DNA (CT DNA) has been studied by differential pulse voltammetry (DPV), UV-Visible absorption, circular dichroism (CD) and fluorescence spectroscopy. The experimental results of increasing peak current, changes in the UV-Visible absorption and fluorescence spectra of NR and decreasing the induced circular dichroism (ICD) intensity show that (i) the binding mode of NR molecules is changed from intercalating into DNA base pairs to aggregating along the DNA double helix and (ii) the orientation of NR chromophore in DNA double helix is also changed with the temperature.  相似文献   

12.
A composite Langmuir? Blodgett film prepared from DNA and polyaniline was deposited on the surface of a glassy carbon electrode (GCE) to give a new voltammetric sensor for the β2‐agonist salbutamol (SAL). Cyclic voltammetry and electrochemical impedance spectroscopy were employed to study the characteristic of the modified electrode. The electrochemistry of SAL at the modified electrode was investigated at pH 6.8 by cyclic voltammetry and differential pulse anodic voltammetry. The oxidation of SAL at this electrode is an adsorption‐controlled irreversible process. A sensitive electroanalytical method for determination of SAL was worked out that displays high precision and good reproducibility. The method was applied to quantify SAL in tablets with satisfactory results.  相似文献   

13.
In the present study, a method for simultaneous determination of two different DNAs is developed based on nuclease-assisted target recycling and nanoparticle amplification. The target recycling process is accomplished by taking advantage of the cleavage property of nicking endonuclease (NEase) for specific nucleotide sequences in duplex. In the presence of target DNA, the linker DNA in our detection system can hybridize with the target and be cleaved to form short fragments. Thus the target DNA is released and recognized by another linker DNA, activating the next round of cleavage reaction. On the other hand, two bio-barcode probes, a PbS nanoparticles (NPs)-DNA probe and a CdS NPs-DNA probe, are used for tracing two target DNAs to further amplify the detection signals. Based on a sensitive differential pulse anodic stripping voltammetry (DPASV) method for the simultaneous detection of Pb2+ and Cd2+ obtained by dissolving two probes, two different target DNAs are determined with high sensitivity and single-base mismatch selectivity.  相似文献   

14.
We report a novel autonomous DNA machine for amplified electrochemical analysis of two DNAs. The DNA machine operates in a two‐cycle working mode to amplify DNA recognition events; the working mode is assisted by two different nicking endonucleases (NEases). Two bio‐barcode probes, a ZnS nanoparticle (NP)–DNA probe and a CdS NP–DNA probe, were used to trace two target DNAs. The detection system was based on a sensitive differential pulse anodic stripping voltammetry (DPASV) method for the simultaneous detection of ZnII and CdII tracers, which were obtained by dissolving the two probes. Under the optimised conditions, detection limits as low as 5.6×10?17 (3σ) and 4.1×10?17 M (3σ) for the two target DNAs were achieved. It has been proven that the DNA machine system can simultaneously amplify two target DNAs by more than four orders of magnitude within 30 min at room temperature. In addition, in combination with an aptamer recognition strategy, the DNA machine was further used in the aptamer‐based amplification analysis of adenosine triphosphate (ATP) and lysozyme. With the amplification of the DNA machine, detection limits as low as 5.6×10?9 M (3σ) for ATP and 5.2×10?13 M (3σ) for lysozyme were simultaneously obtained. The satisfactory determination of ATP and lysozyme in Ramos cells reveals the good selectivity and feasibility of this protocol. The DNA machine is a promising tool for ultrasensitive and simultaneous multianalysis because of its remarkable signal amplification and simple machine‐like operation.  相似文献   

15.
The electrochemical oxidation of 3-nitro-tyrosine (3-NO2-Tyr) was studied in aqueous media at metallic electrodes (platinum and gold), using voltammetric techniques. The interaction between 3-NO2-Tyr and double helix DNA (dsDNA) in a physiological medium was also investigated. Electro-oxidation of 3-NO2-Tyr occurs in one single irreversible pH-dependent step with the transfer of one electron and one proton from the phenolic group to the formation of radicals, which preferably dimerize, fouling the electrode surfaces. The differential pulse voltammetry and gel electrophoresis results clearly demonstrated a strong interaction of 3-NO2-Tyr with the dsDNA for the formation of a stable 3-NO2-Tyr-dsDNA complex.  相似文献   

16.
The keto-enol tautomerization of p-hydroxyphenylpyruvic acid (pHPP) in aqueous solutions and the complexation reaction between enolic pHPP and boric acid have been studied by electrochemical techniques including linear sweep voltammetry (LSV), pulse voltammetry, and cyclic voltammetry (CV), combining with UV spectrometry. Electrochemical techniques reveal that in aqueous solution, there are two tautomers of pHPP: enolic form and ketonic form; the former exists mainly in freshly prepared pHPP solution, and the latter exists mainly in equilibrium solution. Both enolic and ketonic pHPP are electroactive. The electrochemical oxidation of enolic pHPP gives rise to two anodic waves, I(a) and II(a), while the electrochemical oxidation of ketonic pHPP only results in the observation of the second wave II(a). The oxidation process I(a) is revealed to be associated with the quasi-reversible, two-electron two-proton oxidation of "C=C"group at the side chain of enolic pHPP, and the oxidation process II(a) is proposed to result from the irreversible oxidation of phenolic hydroxyl group. It is observed that in aqueous solution, enolic pHPP can quickly complex with boric acid to yield enol-borate complex that can also oxidize at a glassy carbon electrode to yield an anodic wave.  相似文献   

17.
Zhu N  Zhang A  He P  Fang Y 《The Analyst》2003,128(3):260-264
A novel, sensitive electrochemical DNA hybridization detection assay, using cadmium sulfide (CdS) nanoclusters as the oligonucleotide labeling tag, is described. The assay relies on the hybridization of the target DNA with the CdS nanocluster oligonucleotide DNA probe, followed by the dissolution of the CdS nanoclusters anchored on the hybrids and the indirect determination of the dissolved cadmium ions by sensitive anodic stripping voltammetry (ASV) at a mercury-coated glassy carbon electrode (GCE). The results showed that only a complementary sequence could form a double-stranded dsDNA-CdS with the DNA probe and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. The combination of the large number of cadmium ions released from each dsDNA hybrid with the remarkable sensitivity of the electrochemical stripping analysis for cadmium at mercury-film GCE allows detection at levels as low as 0.2 pmol L(-1) of the complementary sequence of DNA.  相似文献   

18.
Bisphosphoramidates are known as anticancer, antibacterial, antiviral drugs and enzyme inhibitory agents. These compounds are electroactive and insoluble in aqueous media. Hence, a comprehensive study about the electrochemical properties of them seems very interesting. The oxidative behaviors of some bisphosphoramidates were studied in buffer solution over a wide pH range by cyclic voltammetry and differential pulse voltammetry using spiked carbon paste electrodes. The interaction of these compounds with calf thymus DNA (CT‐DNA) showed the ability of these compounds as DNA sensing. The decrease in the anodic peaks of bisphosphoramidates in the presence of DNA was used for the DNA monitoring.  相似文献   

19.
Up to now, the development of the electrochemical DNA hybridization sensors relied on solid electrodes, on which both the hybridization and detection steps have been performed. Here we propose a new method in which the DNA hybridization is performed at commercially available magnetic beads and electrochemical detection on detection electrodes (DE). Due to minimum nonspecific DNA adsorption at the magnetic beads, very high specificity of the DNA hybridization is achieved. Optimum DE can be chosen only with respect to the given electrode process. It is shown that high sensitivity and specificity in the detection of relatively long target DNAs can be obtained (a) by using cathodic stripping voltammetry at mercury or solid mercury amalgam DEs for the determination of purine bases, released from DNA by acid treatment, and (b) by enzyme-linked immunoassay of target DNA modified by osmium tetroxide,2,2'-bipyridine (Os,bipy) at carbon DEs. Direct determination of Os,bipy at mercury and carbon electrodes is also possible.  相似文献   

20.
《Electroanalysis》2017,29(7):1674-1682
Human cytochrome CYP1A2 is one of the major hepatic cytochrome P450s involved in many drugs metabolism, and chemical carcinogens activation. The CYP1A2‐dsDNA interaction in situ evaluation using a DNA‐electrochemical biosensor and differential pulse voltammetry was investigated. A dsDNA‐electrochemical biosensor showed that CYP1A2 interacted with dsDNA causing conformational changes in the double helix chain and DNA oxidative damage. A preferential interaction between the dsDNA guanosine residues and CYP1A2 was found, as free guanine and 8‐oxoguanine, a DNA oxidative damage biomarker, oxidation peaks were detected. This was confirmed using guanine and adenine homopolynucleotides‐electrochemical biosensors. The CYP1A2‐dsDNA interaction and dsDNA conformation changes was also confirmed by UV‐Vis spectrophotometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号