首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made on the effects of polymerization conditions on the long‐chain branching, molecular weight, and end‐group types of polyethene produced with the metallocene‐catalyst systems Et[Ind]2ZrCl2/MAO, Et[IndH4]2ZrCl2/MAO, and (n‐BuCp)2ZrCl2/MAO. Long‐chain branching in the polyethenes, as measured by dynamic rheometry, depended heavily on the catalyst and polymerization conditions. In a semibatch flow reactor, the level of branching in the polyethenes produced with Et[Ind]2ZrCl2/MAO increased as the ethene concentration decreased or the polymerization time increased. The introduction of hydrogen or comonomer suppressed branching. Under similar polymerization conditions, the two other catalyst systems, (n‐BuCp)2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO, produced linear or only slightly branched polyethene. On the basis of an end‐group analysis by FTIR and molecular weight analysis by GPC, we concluded that a chain transfer to ethene was the prevailing termination mechanism with Et[Ind]2ZrCl2/MAO at 80 °C in toluene. For the other catalyst systems, β‐H elimination dominated at low ethene concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 376–388, 2000  相似文献   

2.
Ansa metallocene dichloride complexes of titanium, zirconium, and hafnium can be activated by methyl aluminoxane (MAO) to give excellent catalysts for the homogeneous polymerization of ethylene and propylene. The symmetry of the corresponding metaliocene dichloride complexes is essential for the stereospecific polymerization of propylene (isotactic, syndiotactic or atactic). The application of fluorenyl groups instead of cyclopentadienyl groups greatly increases the activity of the catalysts. The first ansa bis(fluorenyl) complexes of zirconium and hafnium, (C13H8-C2H4-C13Hs)MCl2 (M = Zr, Hf), have been prepared. It was found that after the activation by MAO the zirconium derivative demonstrates a very high activity. Several model complexes are presented in order to discuss the mechanism of the polymerization.This paper was presented at the INEOS-94 Workshop The Modern Problems of Organometallic Chemistry (Moscow, May 21–27, 1994).Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 7–14, January, 1995.  相似文献   

3.
The major part of the present paper discusses the ability of well-defined ω-undecenyl polystyrene, polyisoprene or poly(styrene-block-isoprene) macromonomers to undergo coordination homopolymerization in the presence of selected titanium catalysts. Special emphasis is given to the influence of the nature of the catalyst, the polymerization temperature and the macromonomer molar mass and concentration on homopolymerization yield and average degree of homopolymerization (DPn). Titanium-based catalytic systems such as CpTiCl3/MAO and Cp*TiCl3/MAO only yielded dimers. The use of the homogeneous metallocene catalyst with constrained ligand geometry (CGC-Ti/MAO) having an open active site, significantly improved the degree of polymerization. Increasing macromonomer molar mass, causes only a slight decrease of DPn whereas conversion increased moderately. The final section briefly discusses the copolymerization of ω-undecenyl polystyrene macromonomers with ethylene in the presence of Versipol™ catalysts.  相似文献   

4.
Living polymerization of propene with alkyltitanium-based catalysts is described with emphasis on the role of the activators employed. (1 : 3-tert-Butyl(dimethylfluorenylsilyl)amido)dimethyltitanium activated by tris(pentafluorophenyl)borane (B(C6F5)3) catalyzes the living polymerization at -50 °C. The use of dried methylaluminoxane (MAO) in place of B(C6F5)3 raises the living polymerization temperature to 0 °C and improves the syndiospecificity. A chelating diamide dimethyltitanium activated by dried modified MAO (MMAO) catalyzes the living polymerization at 0 °C to give a statistically atactic polymer. The heterogenization of the living systems is attempted by supporting MAO, MMAO and dried MMAO on SiO2 as solid activators.  相似文献   

5.
The polymerization of diacrylates of the nontransition metals Mg, Zn, Ba, and Pb, which proceeds at low temperatures (5–10°C) with the complexes of alkylcobalts with tridentate Shiff bases (RCo) as initiators, was studied. The radical mechanism of the process was proved with the aid of free radical scavengers. The polymerization kinetics is given by the equationW n = k [M] · [RCo]0.75. The influence of the nature of the metal in the monomer and the alkyl ligand in the initiator on the polymerization process was discussed. Low temperatures promote the formation of polymers with high molecular weights and a predominantly syndiotactic structure. The effect of the steric hindrances arising during polymerization due to the formation of a three-dimensional cross-linked structure in the metal-containing polymer on the microstructure of polymer chain and on polymerization kinetics was considered.For part 24 seeBull. Acad. Sci., Div. Chem. Sci., 1992, 1609.For a preliminary communication see Ref.1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 500–503, March, 1993.  相似文献   

6.
The effects of polymerization conditions were evaluated on the production of polyethylene by silica-supported (n-BuCp)2ZrCl2 grafted under optimized conditions and cocatalyzed by methylaluminoxane (MAO). The Al : Zr molar ratio, reaction temperature, monomer pressure, and the age and concentration of the catalyst were systematically varied. Most reactions were performed in toluene. Hexane, with the addition of triisobutilaluminum (TIBA) to MAO, was also tested as a polymerization solvent for both homogeneous and heterogeneous catalyst systems. Polymerization reactions in hexane showed their highest activities with MAO : TIBA ratios of 3 : 1 and 1 : 1 for the homogeneous and supported systems, respectively. Catalyst activity increased continuously as Al : Zr molar ratios increased from 0 to 2000, and remained constant up to 5000. The highest activity was observed at 333 K. High monomer pressures (≈ 4 atm) appeared to stabilize active species during polymerization, producing polyethylenes with high molecular weight (≈ 3 × 105 g mol−1). Catalyst concentration had no significant effect on polymerization activity or polymer properties. Catalyst aging under inert atmosphere was evaluated over 6 months; a pronounced reduction in catalyst activity [from 20 to 13 × 105 g PE (mol Zr h)−1] was observed only after the first two days following preparation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1987–1996, 1999  相似文献   

7.
Half-titanocene is well-known as an excellent catalyst for the preparation of SPS (syndiotactic polystyrene) when activated with methylaluminoxane (MAO). Dinuclear half-sandwich complexes of titanium bearing a xylene bridge, (TiCl2L)2{(μ-η5, η5-C5H4-ortho-(CH2–C6H4–CH2)C5H4}, (4 (L = Cl), 7 (L = O-2,6-iPr2C6H3)) and (TiCl2L)2{(μ-η5, η5-C5H4-meta-(CH2–C6H4–CH2)C5H4} (5 (L = Cl), 8(L = O-2,6-iPr2C6H3)), have been successfully synthesized and introduced for styrene polymerization. The catalysts were characterized by 1H- and 13C NMR, and elemental analysis. These catalysts were found to be effective in forming SPS in combination with MAO. The activities of the catalysts with rigid ortho- and meta-xylene bridges were higher than those of catalysts with flexible pentamethylene bridges. The catalytic activity of four dinuclear half-titanocenes increased in the order of 4 < 5 < 7 < 8. This result displays that the meta-xylene bridged catalyst is more active than the ortho-xylene bridged and that the aryloxo group at the titanium center is more effective at promoting catalyst activity compared to the chloride group at the titanium center. Temperature and ratio of [Al]:[Ti] had significant effects on catalytic activity. Polymerizations were conducted at three different temperatures (25, 40, and 70 °C) with variation in the [Al]:[Ti] ratio from 2000 to 4000. It was observed that activity of the catalysts increased with increasing temperature, as well as higher [Al]:[Ti]. Different xylene linkage patterns (ortho and meta) were recognized to be a principal factor leading to the characteristics of the dinuclear catalyst due to its different spatial arrangement, causing dissimilar intramolecular interactions between the two active sites.  相似文献   

8.
Comparative analysis of the oxidizing and complexing properties of the DMSO–HX (X = Cl, Br, I) and DMSO–HX–ketone (X = Br, I; the ketone is acetone, acetylacetone, or acetophenone) systems toward silver was performed. The reaction products are AgX (X = Cl, Br, I), [Me3S+]Ag n X m (n= 1, 2; m= 2, 3; X = Br, I) and [Me2S+CH2COR]AgX 2(R = Me, Ph; X = Br, I). The composition of the obtained complexes depends on both the DMSO : HX ratio and the nature of HX, as well as on the methods used to isolate solid products from the solution. It was noted that the formation of the [Me2S+CH2COMe]AgBr 2complex in the Ag0–DMSO–HBr–acetylacetone system occurs with cleavage of the acetylacetone C–C bond and follows a specific reaction course. The optimum conditions for production of the silver compounds in the title systems are determined.  相似文献   

9.
Ethylenebis(5‐chlorosalicylideneiminato)vanadium dichloride supported on MgCl2(THF)2 or on the same carrier modified by EtnAlCl3?n, where n = 1–3, was used in ethylene polymerization in the presence of MAO or a common alkylaluminium compounds as a cocatalyst. The support type alter vanadium loading and also change the characteristic of the catalytic active sites. Et2AlCl is the best activator for a catalyst which has been immobilized on a nonmodified support, whereas the systems which contain a carrier which has been modified by an organoaluminium compound reveal the highest activity in conjunction with MAO. That difference, together with different temperature effects on polymerization efficiency (i.e., decrease and increase of catalytic activity for increasing temperatures, respectively) suggest the formation of different types of active sites in the catalytic systems supported on modified and nonmodified magnesium carrier. However, all supported precatalysts possess a long lifetime, still being active towards ethylene polymerization after 2 h. All the systems yield wide MWD polyethylene, while bimodal MWD is found for some part of analyzed samples. Polyethylene with bimodal particle size distribution is formed with the system which contain modified carriers at higher temperatures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3480–3489, 2009  相似文献   

10.
The real and imaginary components of the dynamic heat capacity, Cp′ and Cp″, respectively, have been measured for a fixed frequency of 5 mHz during the polymerization of various compositions of a diepoxide–diamine, molecular liquid mixture to a network structure. The heat evolved during the polymerization was measured simultaneously. Cp′ decreased in two steps as the covalent bonds formed and the network structure grew. The steps became more separated when the amount of the already excess diepoxide was further increased. Cp″ showed a peak in its plot against the polymerization time, but only in the region where Cp′ showed a second step. This is attributed to the increase in the relaxation time leading to vitrification of the liquid. For the diepoxide-rich compositions, the enthalpy release also occurred in two steps and it was more for the second stage of the network's growth than for the first. Combined measurements of the exothermic effects and Cp′ and Cp″ thus delineated two stages of the network's growth by two chemical reactions. The nature of the second-stage network growth that ultimately vitrifies the stoichiometric liquid mixture is discussed. It is concluded that the second-stage growth is mass-controlled and occurs by an etherification reaction whose thermodynamic consequences have been elusive in past studies.  相似文献   

11.
Novel catalytic systems based on bis‐(chelate)nickel(II) precursors, such as bis(α‐nitroacetophenonate)nickel(II) [Ni(naph)2] and bis(2,6‐diisopropylbenzenesalicylaldiminate)nickel(II) [Ni(dipbs)2], and methylaluminoxane (MAO) as the cocatalyst were employed for the polymerization of methyl methacrylate (MMA). Reaction parameters were examined. Under proper conditions, the Ni(dipbs)2/MAO system allowed to obtain poly(MMA) with a very high productivity (TOF up to 70 000 h–1) and a remarkable syndiospecificity degree (rr > 80%) at room temperature without addition of an ancillary Lewis base.  相似文献   

12.
The polymerization of di-2[2-(2-methoxyethoxy)ethoxy]ethyl itaconate (1) with dimethyl 2,2-azobisisobutyrate (2) was studied, in benzene, kinetically and spectroscopically with the electron paramagnetic resonance (EPR) method. The polymerization rate (R p) at 50°C is given by the equation:R p=k[2]0.48 [1]2.4. The overall activation energy of polymerization was calculated to be 34 kJ·mol–1. From an EPR study, the polymerization system was found to involve EPR-observable propagating polymer radicals of 1 under the actual polymerization conditions. Using the polymer radical concentration, the rate constants of propagation (k p) and termination (k t) were determined. With increasing monomer concentration,k p(1.54.3 L·mol–1·s–1 at 50°C) increases andk t (1.0·1044.2·104 L·mol–1·s–1 at 50°C) decreases, which seems responsible for the high dependence ofR p on the monomer concentration. The activation energies of propagation and termination were calculated to be 11 kJ·mol–1 and 84 kJ·mol–1, respectively. For the copolymerization of 1(M 1) and styrene (M 2) at 50°C in benzene the following copolymerization parameters were found:r 1=0.2,r 2=0.53, Q1=0.57, ande 1=+0.7.  相似文献   

13.
CpTiCl2(OC6H4X‐p) complexes (where X =­CH3, Cl, NO2,; Cp = cyclopentadienyl) activated with methylaluminoxane (MAO) were used in syndiotactic polymerization of styrene. High activity and selectivity for all catalysts were found. The styrene conversion and reaction selectivity depend on the catalyst ageing time and temperature, polymerization temperature and the nature of the substituent in the phenoxy ring. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The polymerization of butadiene (Bd) with Co(acac)3 in combination with methylaluminoxane (MAO) was investigated. The polymerization of Bd with Co(acac)3‐MAO catalysts proceeded to give cis‐1,4 polymers (94 – 97%) bearing high molecular weights (40 × 104) with relatively narrow molecular weight distributions (Mw's/Mn's). The molecular weight of the polymers increased linearly with the polymer yield, and the line passed through an original point. The polydispersities of the polymers kept almost constant during reaction time. This indicates that the microstructure and molecular weight of the polymers can be controlled in the polymerization of Bd with the Co(acac)3‐MAO catalyst. The effects of reaction temperature, Bd concentration, and the MAO/Co molar ratio on the cis‐1,4 microstructure and high molecular weight polymer in the polymerization of Bd with Co(acac)3‐MAO catalyst were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2793–2798, 2001  相似文献   

15.
The use of a hindered phenol to trap free trimethylaluminum (TMA) in methylaluminoxane (MAO) solutions has been reported to improve the performance of single‐site, homogeneous catalysts for olefin polymerization. In the present study, with the help of rheological analyses, we have investigated and compared the molecular weight, molecular weight distribution and entanglement density of ultrahigh molecular weight polyethylene synthesized with a single‐site catalyst activated by MAO and phenol‐modified MAO. While the number average molecular weight (Mn) of the obtained polymers remains the same for both activations, a higher yield and a higher entanglement density are found in the initial stages of polymerization on using phenol‐modified MAO as the cocatalyst. These results suggest that on using the phenol‐modified MAO as activator, a higher number of active sites are obtained. Surprisingly in the presence of untreated MAO, a tail in the higher molecular mass region is produced. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

16.
The discrete phenolate Nd(2,6-di-tert-butyl-OC6H3)3 has been assessed as pre-catalyst for the polymerization of isoprene using various aluminum based co-catalysts. In combination with MAO and MMAO in toluene, the reaction is quantitative in 1 h at 60 °C, yielding activities comparable to neodymium versatate and isopropylate in similar conditions. In contrast with the abovementioned systems, the phenolate leads to a single site catalyst species in combination with MAO and MMAO. Increasing amounts of MAO in the reactive medium lead to a decrease of the number–average molecular weight of polyisoprene, highlighting the occurrence of chain transfer between neodymium and aluminum. The polymerization is modestly 1,4-trans selective, in the range 60–75%. Using pentane as a solvent and MMAO, ultra high activities up to 3000 kg PI/mol Nd/h can be reached at room temperature, as well as 85% 1,4-cis selectivity. Ternary systems with co-catalysts based on the chlorinated AlEt2Cl in combination with AliBu3 afford finally a 90–98% 1,4-cis stereoselective polymerization depending on the solvent used for the reaction. The SEC traces are in agreement with the presence of several active species for the latter systems.  相似文献   

17.
A new series of 2,6-bis(arylimino)pyridineiron(II) complexes with cycloaliphatic (cyclopentyl, cyclohexyl, cyclooctyl, and cyclododecyl) substituents in the ortho position of the aryl ring are synthesized and studied as components for ethylene polymerization catalysts. Methylaluminoxane is used as an activator for the complexes. The resulting catalytic systems are more active in polymerization at elevated temperatures (60–80°C) than previously described systems based on substituted 2,6-bis(arylimino)pyridines. The influence of the number of CH2 groups in a cycloaliphatic substituent on the efficiency of the catalytic system is studied. Polymers formed are characterized by an increased molecular weight, high density, and high crystallinity.  相似文献   

18.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

19.
Preparation and characterization of new ansa-metallocene complexes containing two substituted fluorenyl ligands connected by an R2E bridge (R = Me, Ph; E = Si, Sn) are reported. The complexes, activated with methylaluminoxane (MAO), polymerize propylene. The degree of stereospecifity of the propylene polymerization depends on the size of the hetero atom in the bridge and the position of the substituents.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2334–2339, September, 1996.  相似文献   

20.
The effect of an alkyl substituted in the aromatic ring of the salen ligand on the polymerization of butadiene (Bd) with (salen)Co(II) complexes in combination with methylaluminoxane (MAO) was investigated. The activity for the polymerization of Bd was influenced significantly by the introduction of alkyl groups at the 3,3′,5,5′‐positions in the aromatic ring of the salen ligand, and both the polymerization rate and 1,4‐cis contents increased in the following order with respect to the alkyl group: H < CH3 < t‐C4H9. This is in good agreement with the bulkiness of the alkyl groups. The activity for the polymerization of the (salen)Co(II) complex possessing t‐C4H9 at the 3,3′‐positions was higher than that of the (salen)Co(II) bearing t‐C4H9 at the 5,5′‐positions. Thus, the introduction of bulky substituents at the 3,3′‐positions of the salen ligand was an important factor in achieving both high activity and high 1,4‐cis selectivity in the polymerization of Bd with (salen)Co(II) complexes in combination with MAO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4088–4094, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号