首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
综述了端基功能化聚合物表面结构与性能的最新研究进展.聚合物端基功能化是实现聚合物表面改性的一种有效技术.通过端基功能化可以精确控制聚合物表面功能基团的种类和数量,从而影响聚合物表面的化学结构与性能.重点论述了功能化端基在聚合物表面的离析现象和产生这一现象的原因,以及功能化端基对聚合物表面分子运动能力的影响.本文还介绍了近年来用于研究端基功能化聚合物表面的表征新技术,如SFG、NR、SSIMS等.对端基功能化聚合物表面的环境响应性也进行了阐述.指出了利用不同功能化端基可以有效地控制聚合物表面的亲疏水性.并对端基功能化聚合物的应用进行了展望.  相似文献   

2.
二茂铁基聚合物由于具有独特的结构特点,使其在电化学、催化、材料等方面受到了广泛的关注.二茂铁聚合物的种类较多且合成方法多种多样.本文综述了近年来含二茂铁基聚合物的合成及应用.从缩聚、开环聚合和接枝共聚等方面介绍了近年来二茂铁基聚合物的合成方法,讨论了二茂铁基聚合物在电化学、生物材料及其他方面的应用.最后,对二茂铁基聚合...  相似文献   

3.
高分子基气敏导电材料是近年来发展起来的一种新型功能高分子复合材料.本文介绍了以炭黑(CB)为导电填充剂的复合传感材料的气敏响应机理的体积膨胀模型、结晶模型和氢键模型,并讨论了逾渗阀值、CB及聚合物微观结构与性能、以及CB与聚合物和溶剂三者之间相互作用等因素对该类材料气敏响应性的影响.  相似文献   

4.
对化石资源的过渡开采导致了严重的能源危机及环境问题,发展生物基聚合物代替石油基聚合物是缓解当前危机的有效途径之一.本文总结了国内外研究人员在生物基聚合物研究领域的最新进展,重点介绍了生物基脂肪族单体、芳香族单体的制备,包括生物基羧酸单体、生物基二醇单体、生物基烃类单体、呋喃基单体、香草醛单体,比较了不同制备方法的选择性及产率;采用传统及新型的聚合方法,如熔融缩聚、自由基聚合、酶催化聚合等,可以将生物基单体转化为各种生物基聚合,包括聚酯、聚酰胺、聚碳酸酯等,并比较了聚合条件对生物基聚合物制备的影响.生物基聚合物具有优良的机械性能及热性能,并展现出各种优异特性,如形状记忆、自修复功能等,有望代替传统的石油基聚合物.最后,对国内外生物基质聚合物的前景做了展望.  相似文献   

5.
刘彦  黄玉惠 《应用化学》1990,7(5):39-44
研究了聚苯醚PPO、羧化PPO、苯酰化PPO、苯磺酰化PPO和磺化PPO在不同溶剂中的溶解能力,分别讨论了各种取代基以及取代度对聚合物溶解性能的影响,由PPO衍生物的特性粘数估算了它们的溶度参数。  相似文献   

6.
共轭聚合物发光和光伏材料研究进展   总被引:5,自引:1,他引:4  
聚合物光电功能材料与器件因其广阔的应用前景,1990年以年来吸引了世界各国学术界的广泛关注和兴趣.聚合物光电子器件主要包括聚合物电致发光二极管、聚合物场效应晶体管和聚合物太阳能电池等,其使用的关键材料是共轭聚合物光电子材料,包括共轭聚合物发光材料、场效应晶体管材料和光伏材料等.本文主要对共轭聚合物电致发光材料和光伏材料的研究进展进行综述,介绍了这些聚合物材料的种类、结构和性质以及在聚合物电致发光器件和聚合物太阳能电池中的应用.并讨论了当前共轭聚合物光电子材料中的关键科学问题和今后的发展方向.  相似文献   

7.
随着人们对化石燃料等不可再生资源需求的不断增长,每年有大量的聚合物以塑料的形式被使用,大多数聚合物来自化石燃料,因此有必要寻找可再生的新型材料。与传统的石油基高分子材料不同,生物基高分子材料是利用可再生的生物资源合成的一类绿色环保聚合物材料,具有来源绿色、价廉易得、易于降解的特点。其中,萜烯以及萜类化合物具有独特的手性骨架和活性位点,有助于替代化石能源制造可再生和可持续的材料,减轻环境负担,进而拓展其在生物医药、包装涂料、食品工业等领域中的应用。本文主要综述了单萜烯,如蒎烯、柠檬烯和月桂烯的聚合过程和方法,并讨论了其在不同的催化体系、温度等方面对聚合过程的影响,所得聚合物在生产生活中的应用和单体在未来可利用的方向。  相似文献   

8.
高性能及多功能化是聚合物基阻尼材料研究的重点.本文从聚合物的三维网络结构和微观结构设计角度综述了聚合物基阻尼材料的最新研究进展,包括梯度网络结构、超分子结构、悬挂链结构及轻质多孔结构.此外,总结了聚合物基阻尼材料的自修复、形状记忆和可回收等功能化研究进展,展望了聚合物阻尼材料的发展趋势及面临的挑战.  相似文献   

9.
对苯乙烯基形状记忆聚合物进行了拉伸实验研究,测定了该材料在25℃、30℃、40℃和50℃时的弹性模量和屈服极限.根据实验结果,建立了苯乙烯基形状记忆聚合物的材料参数方程,描述了苯乙烯基形状记忆聚合物在玻璃体转化过程中,材料参数和温度的关系.在假设形状记忆聚合物为各向同性材料的基础上,将Tobushi等建立的热力学本构方程从一维扩展到三维.基于有限元分析软件ABAQUS的二次开发功能,针对上述本构方程和材料参数方程,编写了可供ABAQUS调用的UMAT函数,并对苯乙烯基形状记忆聚合物实现形状记忆效应的高温变形、应力冻结和形状恢复等热力学过程,进行了有限元数值模拟分析.  相似文献   

10.
高效合成和功能性基团的引入是当前有机微孔聚合物材料研究的热点. 采用强质子酸催化的腈基三聚环化反应, 室温合成制备了一系列带有不同取代基的芴基共价三嗪骨架聚合物(FCTF1~FCTF3), 系统研究了取代基的变化对所得材料光学性能、多孔性能及CO2吸附能力的影响. 其中乙基取代的聚合物FCTF2具有最高的BET比表面积(621 m2/g)和CO2吸附能力(1.8 mmol/g, 273 K/1.1 bar). 该研究有助于加深对有机微孔聚合物结构与性能关系的理解, 对该类材料的分子设计有借鉴意义.  相似文献   

11.
The mechanical behavior of polymer materials is strongly dependent on polymer structure and morphology of the material. The latter is determined mainly by processing and thermal history. Temperature-dependent on-line X-ray scattering during deformation enables the investigation of deformation processes, fatigue and failure of polymers. As an example, investigations on polypropylene are presented. By on-line X-ray scattering with synchrotron radiation, a time resolution in the order of seconds and a spatial resolution in the order of microns can be achieved. The characterization of the crystalline and amorphous phases as well as the study of cavitation processes were performed by simultaneous SAXS and WAXS. The results of scattering experiments are complemented by DSC measurements and SEM investigations. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1574–1586, 2010  相似文献   

12.
Deformation-induced cavitation influences the mechanical response of polymeric materials, but acquiring in situ measurements of the spatial evolution of cavities has typically necessitated the use of synchrotron radiation sources. The objective of this study is to develop and demonstrate a method allowing for in situ measurements of deformation-induced cavitation in axisymmetric polymer specimens, using a home-laboratory X-ray computed tomography setup. The method is demonstrated by assessing deformation-induced cavitation of mineral-filled PVC in a repeated loading-unloading experiment. A temporal resolution of about 3 s is obtained by exploiting the axisymmetry of notched round tensile specimens. The evolution of relative density was captured throughout the experiment, revealing an interplay between void nucleation and void growth. Combined with surface deformation measurements obtained by digital image correlation, the present technique yields data suitable for calibration and validation of material models.  相似文献   

13.
Ultrasonic degradations of hydroxypropyl cellulose (HPC) have been carried out in water, ethanol, and tetrahydrofuran (THF) solutions. In the HPC-water system, cavitation intensity did not increase linearly with ultrasound intensity because of a lower threshold of ultrasonic intensity below which cavitation does not occur. At 27°C the rate of degradation in the three solvents followed the order water > ethanol > THF which is not in line with their characteristic impedance values. The rate of degradation for 20 kHz, 70 W ultrasound intensity was found to increase with a decrease in solution volumes, concentration of HPC, and temperature. Increased rate of degradation at lower temperatures supports the concept based on sonoluminescence experiments that it is the cavitation in a polymer solution that is responsible for ultrasonic degradations and the dissolved polymer molecules do not act as cavitation nuclei. Increased surface tension and density of the solvent are thought to be responsible for improved cavitation at low temperatures. Infrared spectroscopy and x-ray analysis of HPC subjected to ultrasonic treatments remained unchanged, suggesting that there were no chemical or structural (e.g., degree of order) changes on irradiation. The decreases in molecular weights on irradiation arise due to random chain scission whereas similar decreases in Huggins coefficients can be attributed to physical changes (decrease in molecular weight or branching) in the degraded HPC samples.  相似文献   

14.
High toughened polymeric materials have a wide application in many fields. Poly(methyl methacrylate) (PMMA) is a typical brittle polymer and it has been difficult to prepare high toughened PMMA material for a long time. To work on this issue, co-continuous phase structure was devised in PMMA/chlorinated polyethylene (CPE) blends through controlling the interfacial tension and viscosity in this work, resulting in the pronounced enhancement of impact toughness. The notched impact strength of co-continuous blends with 40 wt% CPE was up to 28.5 kJ/m2, increased by 26 times compared with pure PMMA. Selective extraction experiments, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) showed that the CPE network was thin and weak when CPE addition was low, but became dense and strong once the content was more than 20 wt%. Two toughening mechanisms, i.e. cavitation and shear yielding, were put forward based on the micrographs of impact-fractured surfaces and double-notch four-point-bending test. This work may broaden the application prospects of PMMA and provide a new strategy to prepare high toughened polymeric materials through fabricating co-continuous in polymer blends.  相似文献   

15.
采用3种原子百分比Ni52Al48,Ni60Al40及Ni70Al30成分的靶材以阴极电弧放电离子被覆技术制备不同组成的Ni_Al薄膜于AISI1045中碳钢基材表面上,并观察镀膜微结构与成分随靶材成分的变化,评估应用Ni_Al于抗坑蚀功能方面的可行性.研究结果显示:使用上述3种靶材所获致的镀膜组成依次为Ni62Al38,Ni63Al37及Ni69Al31,镀膜镍含量随靶材镍含量增加而增加.3种镀膜的相组成均以Ni3Al为主,从富镍Ni70Al30靶材所得的镀膜尚含有部分镍相.镀膜具有极强的附着性并反映在镀膜的抗坑蚀性上.在纯水中,所有的Ni_Al镀膜试片均能提高中碳钢基材的抗坑蚀性,约达10倍.在3.5wt%盐水与3.5wt%盐酸中亦分别有两倍以上的效果.而在这3种测试环境中,3种镀膜试片的坑蚀损失差别均不明显,无法判断镀膜组成对抗坑蚀性的影响.从动电位极化曲线可以看出,镀膜试片均能大幅提高基材在盐酸与盐水溶液中的抗蚀性,然而因坑蚀破坏而形成的孔洞会由于孔蚀而导致腐蚀加剧,造成镀膜试片在腐蚀溶液中之抗坑蚀效果低于电化学量测时所预期的保护效果.  相似文献   

16.
We have investigated the structural changes occurring in highly crosslinked and carbon‐black filled natural rubber under uniaxial extension by small‐ and wide‐angle X‐ray scattering using synchrotron radiation. The experiments focused on strain‐induced crystallization (SIC) and nanocavitation and were carried out on a model series of materials as a function of temperature and aging conditions. We find that for all materials both SIC and cavitation decrease markedly with temperature and aging. However, the presence of carbon black filler shifts the ceiling temperature where SIC is observed to at least 120°C, presumably by a nucleating effect, maintaining the high strength of the elastomers. Interestingly, although in pure elastomers, the cavitation strength decreases with temperature, we find that in these filled elastomers the critical stress for the onset of cavitation increases significantly with temperature strongly suggesting that cavitation is due to the local confinement between fillers and supporting the idea of a glassy layer near the filler. Aging for 10 days at 110°C in oxygen‐free conditions decreases both SIC and cavitation and reduces the strength of the elastomer at high temperature. This is attributed to the formation of sulfur side chains hindering the crystallization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 780–793  相似文献   

17.
The principal criteria used to predict cavitation in rubber materials are reviewed, and experimental evidence is recalled for three different configurations: in the bulk, in the vicinity of a rigid particle, and in small rubber particles embedded in a rigid polymer matrix. Two major classes of cavitation criteria are defined, those based on an elastic instability (i.e., related to a stress state and finite strains) and those based on the energy balance (i.e., involving surface energies). The different criteria, in which various hyperelastic behavior laws are considered, are compared in numerical applications, and the tendencies are derived. The particular case of accounting for the surface tension of the rubber, a parameter common to the stress state and the energy balance, is treated in detail. It appears that the understanding of the genesis of a microcavity in a rubber material, when no pre‐existing flaw is assumed, still constitutes a difficulty for the analysis of mechanical damage in polymers containing a rubber phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2081–2096, 2001  相似文献   

18.
The nanoparticle(NP) functionalization is an effective method for enhancing their compatibility with polymer which can influence the fracture property of the polymer nanocomposites(PNCs). This work aims to further understand the cavitation and crazing process, hoping to uncover the fracture mechanism on the molecular level. By adopting a coarse-grained molecular dynamics simulation, the fracture energy of PNCs first increases and then decreases with increasing the NP functionalization degree α while it shows a continuous increase with increasing the interaction ε_(pA) between polymer and modified beads. The bond orientation degree is first characterized which is referred to as the elongation. Meanwhile, the stress by polymer chains is gradually reduced with increasing the α or the ε_(pA) while that by NPs is enhanced.Furthermore, the percentage of stress by polymer chains first increases and then decreases with increasing the strain while that by NPs shows a contrast trend. Moreover, the number of voids is quantified which first increases and then decreases with increasing the strain which reflects their nucleation and coalescence process. The voids prefer to generate from the polymer-NP interface to the polymer matrix with increasing α o r ε_(pA).As a result, the number of voids first increases and then decreases with increasing α while it continuously declines with the ε_(pA). In summary, our work provides a clear understanding on how the NP functionalization influences the cavitation and crazing process during the fracture process.  相似文献   

19.
Ductile polymers are significantly toughened by the addition of an elastomeric phase. The rubber phase acts as a stress concentrator, cavitates during the loading process and initiates localized plastic deformation in matrix. This paper deals with the simulation of the deformation behavior of rubber toughened polycarbonate and the fracture process of the embedded rubber particle. A two-dimensional one particle- and two-particle model with varying surface-to-surface interparticle distances are established. The calculation showed that the polymer matrix has plastically deformed before cavitation for the one-particle model whereas cavitation occurs in the elastic state of the matrix for the two-particle model. Cavitation itself is proved to be a change from the particle-system towards a void-system for both cases. The toughness of the post-cavitated void-system is shown to be dependent on the surface-to-surface interparticle distance and the strain-hardening characteristic of the matrix polymer.  相似文献   

20.
The cavitation phenomenon was studied in isothermally and non-isothermally crystallized polypropylene and high-density polyethylene. It was found that nano-voids were not present in the crystallized samples, but were formed during their tensile deformation. The process of cavitation was initiated before reaching the yield point. The ellipsoidal voids were initially elongated perpendicularly to the deformation direction, but if the polymer (i.e., high-density polyethylene) was able to deform beyond the yield, then the reorientation of voids into the deformation direction was observed at local strains of 100–200 %. This behavior was similar to that observed previously in the samples crystallized without an exact control of solidification conditions. The calculations of Guinier’s radius showed that voids in deformed polypropylene samples were characterized by the gyration radii of 28–50 nm. Smaller voids were observed in polyethylene. The scale of cavitation during deformation, studied on the example of polyethylene, depended on the preceding crystallization process and was most intensive for the specimens crystallized at the highest temperature of 125 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号