首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary : A monoterpyridine‐poly(ethylene glycol) (mono‐tpy‐PEG) and a novel monoterpyridine‐PEG‐functionalized iridium(III ) complex were successfully synthesized and fully characterized by means of NMR, IR, and UV‐vis spectroscopy, as well as gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The functionalized monoterpyridine iridium(III ) complex was synthesized by a bridge‐splitting reaction of a dimeric iridium(III ) precursor complex using a chelating terpyridine ligand with a poly(ethylene glycol) tail. With this approach, a new class of light‐emitting polymeric materials revealing interesting optical properties was made avaialable.

Upon excitation of a spin‐coated film of the iridium(III ) complex prepared here, a yellow emission color (two bands in figure) was observed.  相似文献   


2.
One-step joint synthesis of two iridium porphyrin complexes, a donor-acceptor SAT (sitting a top) complex μ-(5,10,15,20-tetraphenylporphine)-bis-chloroiridium(I) and the covalent complex (5,10,15,20-tetraphenylporphinato)chloroiridium(III) by the reaction of free porphyrin and chloroiridic acid (H3O)2IrCl6 in boiling phenol was studied. The structure of complexes was confirmed by spectroscopy (UV/Vis, IR, 1H NMR) and TLC. The iridium(III) SAT complex with the hydride ligand in the first coordination sphere, (acetato)hydrido(5,10,15,20-tetraphenylporphine)iridium(III), was obtained by oxidative addition reaction, which is quite rare for porphyrin complexes. The thermodynamic stability of the complexes to oxidants (aerated acids) was studied by spectrophotometric titration.  相似文献   

3.
Li MJ  Jiao P  Lin M  He W  Chen GN  Chen X 《The Analyst》2011,136(1):205-210
A new water-soluble iridium(III) diimine complex with appended sugar was synthesized and characterized. The electrochemiluminescent behavior of the new complex in aqueous buffer was first studied and the ECL signal was found to be much higher than that of [Ru(bpy)(3)](2+) at a Pt working electrode. Tri-n-propylamine (TPA) and antibiotics were determined by the ECL of the iridium(III) complex in aqueous buffer at the Pt electrode and the method was found to show good sensitivity and reproducibility. The new iridium(III) complex was found to display good solubility in aqueous solution and a strong ECL signal at the Pt electrode, which might open up the possibility of its application in analysis.  相似文献   

4.
A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.  相似文献   

5.
For the development of excellent optical probes for mercury(II), a series of simple conjugated polymers that contain phosphorescent iridium(III) complexes as receptors for mercury(II) were designed and synthesized. These conjugated polymers showed energy transfer from the polymer host to iridium(III) complex guest in both solution and the solid state. Unexpectedly, they can work as excellent polymer chemodosimeters for mercury(II) by utilizing the mercury(II)‐induced decomposition of iridium(III) complex. They exhibit a pronounced optical signal change with switchable phosphorescence and fluorescence, even when the concentration of a solution of mercury(II) in THF was as low as 0.5 ppb. With the addition of mercury(II), the phosphorescent emission intensity of iridium(III) complexes was quenched completely. As the emission from polymer backbones increased, the emission wavelength was redshifted simultaneously, thereby realizing ratiometric detection. Excellent selectivity toward mercury(II) over other potentially interfering cations was also realized. In addition, an obvious emission color change of polymer solution from red to yellow‐green was observed, thus realizing a “naked‐eye” detection of mercury(II). More importantly, the solid films of these polymer chemodosimeters also exhibited high sensitivity and rapid response to mercury(II), thereby demonstrating the possibility of the fabrication of sensing devices with fast and convenient detection of mercury(II). The sensing mechanism was also investigated in detail. This is the first report on chemodosimeters based on conjugated polymers with phosphorescent iridium(III) complexes.  相似文献   

6.
Processes that occur in strong alkaline solutions of iridium(III) and iridium(IV) hydroxo complexes have been studied by EPR and electronic absorption spectroscopy. It has been demonstrated that dissolution of iridium compounds in alkaline solutions should be accompanied by a series of complicated transformations involving oxygen, which lead to the formation of several binuclear iridium(III, III), (III, IV), and (IV, IV) dioxygen complexes.  相似文献   

7.
A new iridium(III) complex showing intramolecular interligand pi-stacking has been synthesized and used to improve the stability of single-component, solid-state light-emitting electrochemical cell (LEC) devices. The pi-stacking results in the formation of a very stable supramolecularly caged complex. LECs using this complex show extraordinary stabilities (estimated lifetime of 600 h) and luminance values (average luminance of 230 cd m-2) indicating the path toward stable ionic complexes for use in LECs reaching stabilities required for practical applications.  相似文献   

8.
The kinetics of the oxidation of N-methyldiphenylamine-4-sulfonic acid with periodate ions was studied in weakly acidic solutions in the presence of iridium(IV), rhodium(III), and their mixtures. Oxidation rate constants were determined in the presence of individual catalysts and their mixtures. The synergetic effect of iridium(IV) and rhodium(III) on the rate of the indicator reaction was estimated; the range of catalyst ratios for the simultaneous determination of analytes was determined. The effect of some factors (oxidant nature and concentration, temperature, the ionic strength of solution, and interfering ions) on the rate of the indicator reaction in the presence of iridium(IV) and rhodium(III) mixtures was assessed. A procedure for the differential catalytic determination of iridium(IV) and rhodium(III) was proposed and tested in the analysis of artificial mixtures and a platinum concentrate of complex composition (KP-5).  相似文献   

9.
采用微波辐射加热方法,将2,3-二苯基喹喔啉(DPQ)与水合三氯化铱(IrCl3•H2O)反应,合成了一种新型三环喹喔啉铱配合物[Ir(DPQ)3],通过元素分析,1H NMR和质谱方法对配合物结构进行了表征,并初步研究了配合物的吸收光谱和荧光光谱。结果表明,配合物Ir(DPQ)3在387和458nm处存在单线态1MLCT(金属到配体的电荷跃迁)和三线态3MLCT的吸收;在634nm 处有较强的金属配合物三线态的磷光发射。  相似文献   

10.
Squaring the circle: the novel dienamido pincer ligand N(CHCHPtBu(2))(2)(-) affords the isolation of the unusual square-planar iridium(II) and iridium(III) amido complexes [IrCl{N(CHCHPtBu(2))(2)}](n) (n=0 (1), +1 (2)). In contrast, the corresponding iridium(I) complex of the redox series (n=-1) is surprisingly unstable. The diamagnetism of 2 is attributed to strong N→Ir π donation.  相似文献   

11.
Treatment of deprotonated N-(dimethylaminoethyl)-2-diphenylphosphinoaniline with bis(cyclooctene)iridium chloride dimer affords a thermally stable iridium(I) olefin complex. Infrared analysis of the corresponding monocarbonyl iridium(I) compound indicates a relatively electron rich metal center. Reaction of the iridium(I) cyclooctene complex with iodomethane effects oxidation of the metal yielding a five-coordinate iridium(III) methyl iodide complex which reversibly coordinates tetrahydrofuran. X-ray crystallography confirms coordination of ether to the iridium(III) methyl iodide complex and NMR spectroscopic experiments establish an equilibrium constant of 1.66(9) M for tetrahydrofuran binding. A five-coordinate iridium(III) dimethyl complex has also been prepared and characterized by X-ray diffraction. Hydrogenolysis of the dialkyl species permits identification of a short-lived classical iridium(III) dihydride complex.  相似文献   

12.
A cyclic tetranuclear cyclometallated iridium(III) complex using cyanide anions as bridging ligands and displaying a tetrahedrally distorted square geometry has been obtained with high yield; photo- and electrochemical characterizations show that most interesting properties of mononuclear cyclometallated iridium complexes are retained in the tetranuclear assembly.  相似文献   

13.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

14.
To tune aggregation/excimer emission and obtain a single active emitter for white polymer light-emitting devices (PLEDs), a heterobimetallic Pt(II)-Ir(III) complex of FIr(pic)-C(6)DBC(6)-(pic)PtF was designed and synthesized, in which C(6)DBC(6) is a di(phenyloxyhexyloxy) bridging group, FIr(pic) is an iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore and FPt(pic) is a platinum(II) [(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore. Its physical and opto-electronic properties were investigated. Interestingly, the excimer emission was efficiently controlled by this heterobimetallic Pt(II)-Ir(III) complex compared to the PL profile of the mononuclear FPt(pic) complex in the solid state. Near-white emissions were obtained in the single emissive layer (SEL) PLEDs using this heterobimetallic Pt(II)-Ir(III) complex as a single dopant and poly(vinylcarbazole) as a host matrix at dopant concentrations from 0.5 wt% to 2 wt%. This work indicates that incorporating a non-planar iridium(III) complex into the planar platinum(II) complex can control aggregation/excimer emissions and a single phosphorescent emitter can be obtained to exhibit white emission in SEL devices.  相似文献   

15.
The reactions of ruthenium(III), rhodium(III) and iridium(III) chlorides in molten lithium nitrite—sodium nitrite, lithium nitrite—potassium nitrit and sodium nitrite—potassium nitrite eutectics were studied and compared with those of their first row congeners. Ruthenium(III) reacted to form hexanitroruthenate(II) with the evolution of nitrogen dioxide, whereas rhodium(III) and iridium(III) formed hexanitrorhodate(III) and hexanitroiridate(III), respectively. These complexes decomposed at higher temperatures to form ruthenium(IV), rhodium(III) and iridium(IV) oxides, respectively, with the evolution of nitrogen oxides. The stoichiometries of these reactions were established by thermogravimetry and the products were characterized by their IR, visible and UV spectra, and X-ray diffraction patterns.  相似文献   

16.
The synthesis and luminescence of four new iridium (III) diazine complexes (1-4) were investigated. HOMO and LUMO energy levels of the complexes were estimated according to the electrochemical performance and the UV-Vis absorption spectra, showing the pyrimidine complexes have a larger increase for the LUMO than the HOMO orbital in comparison with the pyrazine complexes. Several high-efficiency yellow and green OLEDs based on phosphorescent iridium (III) diazine complexes were obtained. The devices emitting yellow light based on 1 with turn-on voltage of 4.1 V exhibited an external quantum efficiency of 13.2% (power efficiency 20.3 lm/W), a maximum current efficiency of 37.3 cd/A. The electroluminescent performance for the green iridium pyrimidine complex of 3 is comparable to that of the iridium pyridine complex (PPY)2Ir(acac) (PPY = 2-phenylpyridine), which is among the best reported.  相似文献   

17.
Liu Y  Li M  Zhao Q  Wu H  Huang K  Li F 《Inorganic chemistry》2011,50(13):5969-5977
Phosphorescent iridium(III) complexes have been attracting increasing attention in applications as luminescent chemosensors. However, no instance of an iridium(III) complex being used as a molecular logic gate has hitherto been reported. In the present study, two iridium(III) complexes, [Ir(ppy)(2)(PBT)] and [Ir(ppy)(2)(PBO)], have been synthesized (PBT, 2-(2-Hydroxyphenyl)-benzothiazole; PBO, 2-(2-hydroxyphenyl)-benzoxazole), and their chemical structures have been characterized by single-crystal X-ray analysis. Theoretical calculations and detailed studies of the photophysical and electrochemical properties of these two complexes have shown that the N^O ligands dominate their luminescence emission properties. Moreover, [Ir(ppy)(2)(PBT)], containing a sulfur atom in the N^O ligand, can serve as a highly selective chemodosimeter for Hg(2+) with ratiometric and naked-eye detection, which is associated with the dissociation of the N^O ligand PBT from the complex. Furthermore, complex [Ir(ppy)(2)(PBT)] has been further developed as an AND and INHIBIT logic gate with Hg(2+) and histidine as inputs.  相似文献   

18.
Gupta RD  Manku GS  Bhat AN  Jain BD 《Talanta》1970,17(8):772-781
The spectrophotometric characteristics and the stability constants of the yellow to brown 1:1 and 1:2 complexes of platinum metals with oxine N-oxide (existing as chloro mixed-ligand complexes) have been investigated. Oxine N-oxide can be used as a spectrophotometric reagent for ruthenium(III) and iridium(IV).  相似文献   

19.
A novel and highly efficient chlorine functionalized iridium(III) complex is designed and synthesized. The complex shows intensive sky-blue phosphorescence (with a peak of 492?nm and a shoulder at 524?nm), high photoluminescence efficiency (0.78) and moderate full width at half maximum (62?nm). The aromatic chlorine introduced into the complex provides the robust chemical stability and effective sky-blue phosphorescence for organic light-emitting diodes (OLEDs). The maximum power efficiency, current efficiency and external quantum efficiency for the complex based OLED are up to 48.46?lm/W, 55.04?cd/A and 18.47%, respectively.  相似文献   

20.
The structure–property relationship of carborane‐modified iridium(III) complexes was investigated. Firstly, an efficient approach for the synthesis of o‐carborane‐containing pyridine ligands a – f in high yields was developed by utilizing stable and cheap B10H10(Et4N)2 as the starting material. By using these ligands, iridium(III) complexes I – VII were efficiently prepared. In combination with DFT calculations, the photophysical and electrochemical properties of these complexes were studied. The hydrophilic nidoo‐carborane‐based iridium(III) complex VII showed the highest phosphorescence efficiency (abs. =0.48) among known water‐soluble homoleptic cyclometalated iridium(III) complexes and long emission lifetime (τ=1.24 μs) in aqueous solution. Both of them are sensitive to O2, and thus endocellular hypoxia imaging of complex VII was realized by time‐resolved luminescence imaging (TRLI). This is the first example of applying TRLI in endocellular oxygen detection with a water‐soluble nido‐carborane functionalized iridium(III) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号