首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Details are given of a circuit, capable of measuring pressures in the range 10−3 mm Hg to 10−10 mm Hg. As the quotient of ion current over emission current is measured, which is proportional to the pressure in the above-mentioned range, the need for an emission stabilizer has been eliminated. At pressures lower than 10−4 mm Hg, meter indication varies by not more than 3% at emission currents between 10μA and 1 mA. The author wishes to thank Prof. Dr. J. Kistemaker for his stimulating interest, and J. Los, H. Zaaiman, C. Visser, R. Wunnink and T. Heise for carrying out many measurements. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie and was made possible by financial support from the Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek.  相似文献   

2.
This paper presents the results of new microtensile tests conducted to investigate the mechanical properties of submicron-thick freestanding copper films. The method, used in this study, allows the observation of materials response under uniaxial tensile loads with measurements of stress at strain rates up to 5.5 × 10−4/s. It also facilitates tension–tension fatigue experiments under a variety of mean stress conditions at cyclic loading frequencies to 20 Hz. The sample processes involve fabrication of a supporting frame with springs and alignment beams all made of electroplated nickel. Electroplating took place on top of a previously deposited sample rather than creating a structure by subtractive fabrication. Tensile sample loading is applied using a piezoelectric actuator. Load was measured using a capacitance gap sensor with a novel mechanical coupling to the sample. Tension–tension fatigue experiments were carried out with feedback to give load control. Fatigue tests were conducted on sputter-deposited 500 and 900 nm copper films with grain sizes ∼50 nm. Fatigue life reached 105 cycles at low mean load, which decreased with an increase in the mean load. The results indicate decreasing plasticity with increasing mean load.  相似文献   

3.
In coal mining the water flow in broken rock is a very common phenomenon. Study of seepage properties of broken rock is one of the basic subjects required in order to understand the stability of rock surrounding roadways, preventing disasters such as water inrush and gas outbursts and developing underground resources. So far, quantitative studies on the nonlinear seepage properties of broken sandstone under different porosities are not extensive in the research literature. In this article, by means of an electro-hydraulic servo-controlled test system (MTS815.02) and a patent seepage device, the seepage properties under different conditions of porosity were tested on broken sandstone of five different grain sizes. Based on the loading method of controlling the axial compression displacement and steady permeating method, we obtained curves of the relation of pore pressure with time, as well as the relation curves between the pore pressure gradient for steady seepage and velocity. Furthermore, we calculated the permeability k and non-Darcy coefficient β corresponding to different porosities by fitting these curves with the binomial expression. This study indicates that: (1) the seepage properties of broken sandstone are closely related to grain size, load levels, and porosity structure; (2) the permeability k decreases, while the coefficient β increases with a decrease in porosity φ, but both the kφ and the βφ curves show some local fluctuations; (3) the permeability k of the broken sandstone has a magnitude of 10−14–10−12 m2, while the coefficient β ranges from 1010 to 1012 m−1. The results obtained provide some information for further study of the nonlinear seepage behavior of broken rock theoretically.  相似文献   

4.
The main objective of this article is to describe the drying process of ceramic roof tiles, shaped from red clay, using diffusion models. Samples of the product with initial moisture content of 0.24 (db) were placed inside an oven in the temperatures of 55.6, 69.7, 82.7 and 98.6°C; and the data of the drying kinetics were obtained. The analytical solutions of the diffusion equation for the parallelepiped with boundary conditions of the first and third kinds were used to describe the drying processes. The process parameters were determined using an optimization algorithm based on inverse method coupled to the analytical solutions. The analysis of the results makes it possible to affirm that the boundary condition of the third kind satisfactorily describes the drying processes. The values obtained for the convective mass transfer coefficient were between 8.25 × 10−7 and 1.64 × 10−6 m s−1, and for the effective water diffusivity were between 9.21 × 10−9 and 1.80 × 10−8 m2 s−1.  相似文献   

5.
Aerodynamic modification of flow over bluff objects by plasma actuation   总被引:1,自引:0,他引:1  
Particle image velocimetry and smoke visualization are used to study the alteration of the flow field in the wake of a bluff body by use of an alternating current (AC) surface dielectric barrier discharge. Staggered, surface, and buried electrodes were positioned on the downstream side of circular cylinders at conditions of Re D = 1 × 104−4 × 104 configured to impose a force due to the ion drift that is either along or counter to the free-stream flow direction. Smoke visualization and Particle Image Velocimetry (PIV) in the wake of the flow confirms that the configuration of the surface electrodes and operation of the discharge significantly alters the location of the flow separation point and the time-averaged velocity profiles in the near and distant wake. Measurements of the vibrational and the rotational temperature using optical emission spectroscopy on the N2 second positive system (C3Πu–B3Πg) indicates that the resulting plasma is highly non-equilibrium and discounts the possibility of a thermal effect on the flow separation process. The mechanism responsible for reduction or enhancement of flow separation is attributed to the streamwise force generated by the asymmetric ion wind—the direction of which is established by the electrode geometry and the local surface charge accumulated on AC cycles.  相似文献   

6.
The torsional split Hopkinson bar is used for testing materials at strain rates above 104s−1. This strain rate, which is an order of magnitude higher than is typical with this technique, is obtained by using very short specimens. Strain rates of 6.4×104s−1 have been achieved with specimens having a gage length of 0.1524 mm. Results from tests on 1100 aluminum show an increase in rate sensitivity as the strain rate increases.  相似文献   

7.
Samples of commercial tomato paste, low fat mayonnaise and mustard about 6–8 mm thick were squeezed to 0.8 mm at various speeds between 5 mm min−1 and 25 mm min−1 between Teflon-coated parallel plates 127 mm in diameter using an Instron UTM Model 5542. All the log force vs log height relationships had a clearly identified linear region. This indicated that a dominant squeezing flow regime was achieved at about 3 mm height, and that the machine has the proper stiffness to perform the tests. The stress level at a pre-selected height in this region is a measure of consistency, sensitive enough to distinguish between products of different brands. The residual stress after relaxation for about 2 min was on order of 10–50% of the initial stress, an indication that all three foods have a considerable structural integrity. In all three products there was a considerable discrepancy between the observed rate effects and predictions based on a pseudoplastic (power law) model. It could be described by the empirical relation (Fv1 − FR)/(Fv2 − FR)=(V1/V2)m where Fv1 and Fv2 are the forces at the given displacement reached at speeds v1 and v2 respectively, FR is the residual force after relaxation (found to be practically rate independent), and m is a constant of the order of 0.15–0.33, independent of the compression velocities ratio but characteristic of the food and brand. The calculated elongational viscosity was not a unique function of biaxial strain rate. To a certain extent, this was probably due to imperfect lubrication. But it was also a manifestation of these products considerable structural integrity which cannot be accounted for by models developed for ideal liquids. Received: 1 November 1999 Accepted: 2 May 2000  相似文献   

8.
In this article, we present a device for rapid quenching of elongated polymer melts. The tool is an accessory to the uniaxial elongational rheometer RME of Meissner and Hostettler. It is intended to be used for microscopic and other investigations of stretched polymers. The device allows us to solidify a polymer melt by pouring liquid nitrogen on it and to cut it at the nearly same instant of time. Then the sample can be easily removed from the stretching apparatus. Solving the heat diffusion equation for a polymer melt, which is cooled by liquid nitrogen, we theoretically estimate the quenching time of this method. To demonstrate that this quenching procedure indeed rapidly cools a polymer melt, the stress birefringence of elongated and subsequently quenched polystyrene melts is measured and the stress-optical coefficient C is determined. The experimental value of the stress-optical coefficient is |C|= 4.65×10−9 Pa−1, which agrees well with the data in literature. Using this tool for elongation experiments with the RME, polymer melts can be solidified in between approximately 0.2 and 2.0 s, depending on the thickness of the sample.  相似文献   

9.
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity (U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10−5 and 5.981 × 10−5 m2/h for slab products, 0.818 × 10−5 and 6.287 × 10−5 m2/h for cylindrical products and 1.213 × 10−7 and 7.589 × 10−7 m2/h spherical products using the Model-I and 0.316 × 10−5–5.072 × 10−5 m2/h for slab products, 0.580 × 10−5–9.587 × 10−5 m2/h for cylindrical products and 1.408 × 10−7–13.913 × 10−7 m2/h spherical products using the Model-II.  相似文献   

10.
The dynamic yield strengths of three steels were determined at strain rates of about 103 s−1 and 106 s−1. The measurements at 103 s−1 were obtained by a new technique based on measurements of large amplitude elastic waves in long bars struck by rigid flyer plates. Embedded manganin gages were used to measure stress, and the gage records were long enough to observe subsequent reverberations between the bar free end and the plastically deformed impact end. The measurements at 106 s−1 were made with a slightly modified version of a conventional flyer-plate impact configuration. The data are combined with static results to show the behavior of these steels at strain rates of 10−3 s−1 to 106 s−1.  相似文献   

11.
We present exploratory tests of a new optical method which measures directly two components of the 3-D power spectrum of the refractive-index fluctuation. The method was applied to a Mach 2 turbulent shear layer. Length scales of 0.1 mm to 1.0 mm were resolved within a shear-layer thickness ranging from 5 mm to 10 mm. At low-to-moderate wavenumbers, the spectral behavior is roughlyκ −3, while at higher wavenumbers it isκ −3.7. These spectral slopes are in agreement with prevailing theoretical predictions for anisotropic (low-wavenumber) and isotropic (high-wavenumber) turbulence. ]This study was funded by a grant from Lawrence Livermore National Laboratory and by a grant from the California Space Institute. DP is indebted to HFR and Dr. Alfred C. Buckingham of LLNL for their support.  相似文献   

12.
Natural convection in a fluid saturated porous medium has been numerically investigated using a generalized non-Darcy approach. The governing equations are solved by using Finite Volume approach. First order upwind scheme is employed for convective formulation and SIMPLE algorithm for pressure velocity coupling. Numerical results are presented to study the influence of parameters such as Rayleigh number (106 ≤Ra ≤108), Darcy number (10−5Da ≤ 10−2), porosity (0.4 ≤ ɛ ≤ 0.9) and Prandtl number (0.01 ≤ Pr ≤ 10) on the flow behavior and heat transfer. By combining the method of matched asymptotic expansions with computational fluid dynamics (CFD), so called asymptotic computational fluid dynamics (ACFD) technique has been employed to generate correlation for average Nusselt number. The technique is found to be an attractive option for generating correlation and also in the analysis of natural convection in porous medium over a fairly wide range of parameters with fewer simulations for numerical solutions.  相似文献   

13.
Based on the mass transfer theory, a new mass transfer model of ion-exchange process on zeolite under liquid film diffusion control is established, and the kinetic curves and the mass transfer coefficients of –K+ ion-exchange under different conditions were systemically determined using the shallow-bed experimental method. The results showed that the –K+ ion-exchange rates and transfer coefficients are directly proportional to solution flow rate and temperature, and inversely proportional to solution viscosity and the size of zeolite granules. It also showed that the transfer coefficient is not influenced by the ion concentrations. For a large ranges of operational conditions including temperatures (10 − 75°C), flow rates (0.031 m s−1 −0.26 m s−1), liquid viscosities (1.002 × 10−3 N s m−2 − 4.44 × 10−3 N s m−2), and zeolite granular sizes (0.2 − 1.45 mm), the average mass transfer coefficients calculated by the model agree with the experimental results very well.  相似文献   

14.
The measurement of the coefficients of thermal expansion (CTEs) of composite materials using electrical resistance strain gages is addressed. Analytical expressions for the CTEs of an orthotropic lamina are derived, accounting for the effects of transverse sensitivity and possible misalignment of the gages. Experiments are performed for the characterization of the thermal expansion behavior of a fiber-glass-reinforced epoxy unidirectional lamina using an invar specimen as reference material. Preliminary training cycles are performed for the determination of an optimal heating rate for the measurements, which ensures thermal equilibrium conditions. Three measurement cycles yield the principal CTEs of the lamina α1, α2 and α12 with repeatability within ±0.34×10−6, ±0.85×10−6 and ±2.8×10−6/°C, respectively. It is noted that inhomogeneity of the specimen and variation in thermomechanical properties of the gages can cause a noticeable spead in the measurements.  相似文献   

15.
In this paper, we propose a novel method for evaluating the frequency response of shock accelerometers using Davies bar and interferometry. The method adopts elastic wave pulses propagating in a thin circular bar for the generation of high accelerations. The accelerometer to be examined is attached to one end of the bar and experiences high accelerations of the order of 103∼105 m/s2. A laser interferometer system is newly designed for the absolute measurement of the bar end motion. It can measure the motion of a diffuse surface specimen at a speed of 10−3 ∼100 m/s. Uncertainty of the velocity measurement is estimated to be±6×10−4 m/s, proving a high potential for use in the primary calibration of shock accelerometers. Frequency characteristics of the accelerometer are determined by comparing the accelerometer's output with velocity data of the interferometry in the frequency domain. Two piezoelectric-type accelerometers are tested in the experiment, and their frequency characteristics are obtained over a wide frequency range up to several ten kilohertz. It is also shown that the results obtained using strain gages are consistent with those by this new method. Paper was presented at the 1992 SEM Spring Conference on Experimental Mechanics held in Las Vegas, NV on June 8–11.  相似文献   

16.
Summary An instrument is described which enables displacements of 2 × 10−6 cm to be determined by means of interference phenomena of monochromatic light. The measuring pin is pushed against the specimen with a force of 4000 dynes. The instrument setting remains stable for a period of several hours.  相似文献   

17.
The results of a numerical study of two- and three-dimensional Boussinesq density currents are described. They are aimed at exploring the role of the Schmidt number on the structure and dynamics of density driven currents. Two complementary approaches are used, namely a spectral method and a finite-volume interface capturing method. They allow for the first time to describe density currents in the whole range of Schmidt number 1 ≤ Sc ≤ ∞ and Reynolds number 102 ≤ Re ≤ 104. The present results confirm that the Schmidt number only weakly influences the structure and dynamics of density currents provided the Reynolds number of the flow is large, say of O(104) or more. On the contrary low- to moderate-Re density currents are dependant on Sc as the structure of the mixing region and the front velocities are modified by diffusion effects. The scaling of the characteristic density thickness of the interface has been confirmed to behave as (ScRe)−1/2. Three-dimensional simulations suggest that the patterns of lobes and clefts are independent of Sc. In contrast the Schmidt number is found to affect dramatically (1) the shape of the current head as a depression is observed at high-Sc, (2) the formation of vortex structures generated by Kelvin–Helmholtz instabilities. A criterion is proposed for the stability of the interface along the body of the current based on the estimate of a bulk Richardson number. This criterion, derived for currents of arbitrary density ratio, is in agreement with present computed results as well as available experimental and numerical data.   相似文献   

18.
The unsteady natural convection boundary layer flow over a semi-infinite vertical cylinder is considered with combined buoyancy force effects, for the situation in which the surface temperature T w(x) and C w(x) are subjected to the power-law surface heat and mass flux as K(T /r) = −ax n and D(C /r) = −bx m . The governing equations are solved by an implicit finite difference scheme of Crank-Nicolson method. Numerical results are obtained for different values of Prandtl number, Schmidt number ‘n’ and ‘m’. The velocity, temperature and concentration profiles, local and average skin-friction, Nusselt and Sherwood numbers are shown graphically. The local Nusselt and Sherwood number of the present study are compared with the available result and a good agreement is found to exist. Received on 7 July 1998  相似文献   

19.
The transient uniaxial extensional viscosity η e of linear low density polyethylene (LLDPE) has been measured using the commercial Rheometric Scientific RME and the Münstedt Tensile Rheometer in an effort to compare the performance of available extensional rheometers. The RME indicated a significant strain hardening of the LLDPE, especially at a strain rate of 1 s−1. In contrast, the Münstedt rheometer showed the LLDPE to be only slightly strain hardening. This artificial strain hardening effect in the RME resulted from the strain rate applied to the sample, determined from the sample deformation, being up to 20% less than the set strain rate. These results initiated a round-robin experiment in which the same LLDPE was tested on several RMEs in various locations around the world. All but one of the RMEs indicated a deviation between set and applied strain rates of at least 10%, especially at strain rates above 0.1 s−1. The strain rate deviation was found to depend strongly on the value of the basis length L 0 , and may result from the upper pair of belts not properly gripping the sample during extension. Thus visual inspection of the sample deformation is necessary to determine the applied strain rate. The most accurate measurements of η e with respect to the strain rate deviation were obtained when the correct L 0 value and belt arrangement were used. A list of recommendations for running an RME test is provided. Future work focusing on the fluid mechanics during the test may identify fully the cause of the strain rate deviation, but from a practical point of view the problem can be corrected for in the determination of η e . Received: 27 September 2000/Accepted: 5 February 2001  相似文献   

20.
Natural convection in a partially filled porous square cavity is numerically investigated using SIMPLEC method. The Brinkman-Forchheimer extended model was used to govern the flow in the porous medium region. At the porous-fluid interface, the flow boundary condition imposed is a shear stress jump, which includes both the viscous and inertial effects, together with a continuity of normal stress. The thermal boundary condition is continuity of temperature and heat flux. The results are presented with flow configurations and isotherms, local and average Nusselt number along the cold wall for different Darcy numbers from 10−1 to 10−6, porosity values from 0.2 to 0.8, Rayleigh numbers from 103 to 107, and the ratio of porous layer thickness to cavity height from 0 to 0.50. The flow pattern inside the cavity is affected with these parameters and hence the local and global heat transfer. A modified Darcy–Rayleigh number is proposed for the heat convection intensity in porous/fluid filled domains. When its value is less than unit, global heat transfer keeps unchanged. The interfacial stress jump coefficients β 1 and β 2 were varied from  −1 to +1, and their effects on the local and average Nusselt numbers, velocity and temperature profiles in the mid-width of the cavity are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号