首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
矩形板耦合热冲击问题的摄动解   总被引:2,自引:0,他引:2  
本文通过对薄板耦合热弯曲问题的完备方程的无量纲化,引出了关于薄板的无量纲热弹性耦合系数,并以此系数为摄动参数,运用奇异摄动方法,导出了其摄动方程,得到了关于矩形薄板耦合热冲击问题的一致有效的渐近解。然后,在对该解讨论及计算的基础上,获得了一些关于该类问题的规律性的结论。  相似文献   

2.
弹性薄板弯曲问题的边界轮廓法   总被引:4,自引:0,他引:4  
导出了弹性薄板弯曲问题边界积分方程的另一种形式,基于这种方程,提出了平板弯曲问题的边界轮廓法,讨论了三次边界单元边界轮廓法的计算列式,并给出了计算内力的边界轮廓法方程。该法无需进行数值积分计算,完全避免了角点问题和奇异积分计算。给出的算例,与解析解相比较,证实该方法的有效性。  相似文献   

3.
将Koiter理论和奇异摄动理论中的边界层法相结合处理加筋圆柱壳无因次化非线性边界层型Karman-Donnel方程由分支点和边界层导致的双重奇异性,提出外压加筋圆柱壳总体屈曲Koiter—边界层奇异摄动法。从摄动意义上分析边界条件,前屈曲非线性和初始几何缺陷对外压加筋圆柱壳屈曲载荷的影响。算例表明,本方法具有良好的计算效率和计算精度,与数值解相比更能揭示内在影响规律。  相似文献   

4.
四边任意支承条件下弹性矩形薄板弯曲问题的解析解   总被引:1,自引:0,他引:1  
钟阳  张永山 《应用力学学报》2005,22(2):293-297,i013
利用辛几何法推导出了四边为任意支承条件下矩形薄板弯曲的解析解。在分析过程中首先把矩形薄板弯曲问题表示成Hamilton正则方程,然后利用辛几何方法对全状态相变量进行分离变量,求出其本征值后,再按本征函数展开的方法求出四边为任意支承条件下矩形薄板弯曲的解析解。由于在求解过程中并不需要人为的事先选取挠度函数,而是从弹性矩形薄板弯曲的基本方程出发,直接利用数学的方法求出问题的解析解,使得这类问题的求解更加理论化和合理化。文中的最后还给出了计算实例来验证本文方法的正确性。  相似文献   

5.
根据轴对称问题的特点,利用级数展开和求极限法则,证明了轴对称大挠度圆薄板在圆心处应满足的边界条件,并以圆薄板轴对称大挠度弯曲变形微分方程为基础,建立了圆心处非奇异的轴对称大挠度圆板弯曲微分方程,从而可以方便地利用现有的常微分方程数值求解方法(如变步长龙格-库塔法)对实心圆板的轴对称问题进行数值求解,又不必像摄动法那样推导复杂的公式。在数值求解轴对称圆板大挠度弯曲变形微分方程时,将非线性微分方程的求解主要归结为迭代求解圆心处三个未知边界条件的问题,即圆心处的径向膜力、圆心处的挠度、圆心处挠度的二阶导数,并提出了相应的求解方法。实例中,对于圆薄板受均布横向荷载的问题,分析了周边固支边界条件下的非线性弯曲问题,给出了中心挠度参数大范围变化时的荷载和部分边界值变化曲线,并与经典摄动解进行了对比。对比结果可见,本文方法和摄动法的解非常接近,在量纲归一化中心挠度不超过4.0时,两种方法解的相对误差均小于5.0%。另外,本文还分析了与挠度有关的液体压力作用下和集中荷载作用下周边固支圆板的非线性弯曲问题。通过算例可见:本文方法可以灵活处理不同的荷载问题;对于不同的问题,计算过程相似,不必推导复杂的计算公式,计算精度容易控制。  相似文献   

6.
薄板弹塑性弯曲的X样条有限条方法叶金铎,杨海元(天津大学冶金分校,300400)(天津大学,300072)关键词X样条有限条,弹塑性,分层方案,不分展方案,不规则区域1前言采用有限元法解弹塑性问题,计算量大、计算费用高,采用传统有限条法解弹塑性问题又...  相似文献   

7.
利用辛几何方法本文推导出了四边固支矩形弹性薄板弯曲问题的精确解析解.由于在求解过程中不需要事先人为的选取挠度函数,而是从弹性薄板的基本方程出发,首先将矩形薄板弯曲问题表示成Hamilton正则方程,然后利用分离变量和本征函数展开的方法求出可以完全满足四边固支边界条件的精确解析解.本文中所采用的方法突破了传统的半逆法的限制,使得问题的求解更加合理化.文中还给出了计算实例来证明推导结果的正确性.  相似文献   

8.
本文研究运动激波扫过平板边界层后边界层随时间的演化。首先将霍华斯变换推广到非定常情形并引入相似参数将非定常问题化为有两个前缘的边界层问题。这时抛物型方程是奇异的。在激波附近用奇异摄动法求出级数解,然后用逆风格式数值积分将解延拓到平板前缘。  相似文献   

9.
基于具有三个广义位移的板弯曲理论,本文导出仅含三角函数和对数1/2阶的基本解,使用起来较[2]更为方便·利用Betti互易定理,得出边界积分方程.在边界上的内力和位移均离散为常量场,并给出了在奇异积分单元上奇异积分的全部解析表达式.文末的两个算例表明,无论对厚板还是薄板,本文提出的边界元素法均给出较满意的结果.  相似文献   

10.
研究不同边界约束层合薄板在面内与横向组合荷载作用下的非线性弯曲问题,给出了基于摄动技术,单向DQ格式和Galerkin法的半解析法,算例表明该方法是可靠有效的。  相似文献   

11.
本文用奇异摄动法结合正则摄动法求解了考虑毛管力因素时多孔介质中弱非牛顿流体的两相驱替问题,得到了分流函数和湿相饱和度的渐近解析解。所得结果同数值解和经典的牛顿流体两相渗流结果进行了比较,并着重讨论了非牛顿因素的影响。  相似文献   

12.
楼梦麟  黄明开 《力学季刊》2006,27(4):615-620
本文应用直接模态摄动法建立了小开口弯曲型剪力墙和双肢弯曲型剪力墙动力特性近似分析方法,在这一方法中,以等截面均匀悬臂梁的正交模态函数为Ritz展开的基函数,把弯曲型剪力墙看作均匀悬臂梁的局部修改后的新体系,通过模态摄动原理,获得小开口弯曲型剪力墙和双肢弯曲型剪力墙振动模态的半解析解。算例结果表明模态摄动法能够简便地得到精度高的结构动力特性。  相似文献   

13.
利用微分方程相似变换,摄动渐进展开和Padé逼近方法对幂率速度移动表面边界层问题进行了研究,得到了问题的解析近似解,对相应的流动特性进行了探讨.  相似文献   

14.
首先把弹性薄板弯曲问题的控制方程表示成为Hamilton正则方程,然后利用辛几何方法对全状态相变量进行分离变量,求出其本征值后,再按本征函数展开的方法求出矩形悬臂薄板的解析解。由于在求解过程中不需要事先人为地选取挠度函数,而是从薄板弯曲的基本方程出发,直接利用数学的方法求出可以满足其边界条件的这类问题的解析解,使得问题的求解更加理论化和合理化。文中的最后还给出了计算实例来验证本文所采用的方法以及所推导出的公式的正确性。  相似文献   

15.
四边固支矩形薄板自由振动的哈密顿解析解   总被引:2,自引:1,他引:1  
在哈密顿体系中利用辛几何方法求解了四边固支矩形薄板自由振动问题的解析解。首先,从基本方程出发,将问题表示成Hamilton正则方程,然后利用辛几何方法导出本征值问题,从而得到本征函数解,使之满足边界条件;再由方程组有非零解的条件,最终推导出四边固支矩形薄板的自振频率方程,得到频率的解析解。计算了不同长宽比情况下四边固支矩形薄板的频率,结果与已有文献完全一致。该解法有望推广至更多尚未得到解析解的矩形板的振动问题。  相似文献   

16.
该文利用杂交边界点法对简支薄板的热弹性弯曲进行了分析计算.采用薄板的热弹性理论,通过薄板的修正变分原理建立了各向同性薄板的边界局部积分方程,域内变量使用基本解插值,而边界上的变量则用移动最小二乘法近似.计算时仅需边界上离散点的信息,无论变量近似还是数值积分都不需要网格,因此该方法是一种纯边界类型无网格方法.数值算例表明,杂交边界点法在分析薄板的热弯曲问题时具有效率高、精度高和收敛性好等优点.  相似文献   

17.
研究Winkler地基上正交各向异性矩形薄板弯曲方程所对应的Hamilton正则方程, 计算出其对边滑支条件下相应Hamilton算子的本征值和本征函数系, 证明该本征函数系的辛正交性以及在Cauchy主值意义下的完备性, 进而给出对边滑支边界条件下Hamilton正则方程的通解, 之后利用辛叠加方法求出Winkler地基上四边自由正交各向异性矩形薄板弯曲问题的解析解. 最后通过两个具体算例验证了所得解析解的正确性.  相似文献   

18.
 简洁地回顾了钱伟长先生一生的主要学术活动, 并简要地介绍了先生的主要学术贡献, 包括板壳统一内禀理论, 弹性圆薄板大挠度问题的求解-摄动法和奇异摄动法, 环壳方程的一般解, 广义变分原理及其应用, 以及先生对于理性力学和流体力学的贡献等.  相似文献   

19.
用样条有限点法解薄板动力问题   总被引:1,自引:0,他引:1  
本文用样条有限点法解各种边界条件下的薄板动力问题,与有限条法相比,具有计算量少,精度高等显著特点。  相似文献   

20.
含孔曲板弹性波散射与动应力分析   总被引:2,自引:0,他引:2  
胡超  李凤明  黄文虎 《力学学报》2003,35(2):240-245
基于敞口浅柱壳弹性波动方程及摄动方法,对无限大含孔曲板弹性波散射及动应力问题进行了分析研究,将经典薄板弯曲波动问题的分析解作为本问题的主项,给出了在稳态波下孔洞附近散射波的零阶渐近解。建立了求解含孔曲板弹性波散射与动应力问题的边界积分方程法,利用积分方程法可获得问题的近似分析解。并给出了无限大曲板圆孔附近动应力集中系数的数值结果,且对计算结果进行了分析与讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号