首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— Egg white lysozyme was inactivated by photodynamic treatment in sodium phosphate buffer at pH8 using methylene blue, eosin Y and FMN as sensitizers. Measurements sensitive to changes in protein conformation, in particular, tryptophyl fluorescence and protease digestibility, were made during the course of inactivation. The rate of change of lysozyme tertiary structure as measured in these ways correlated closely with the rate of loss of enzyme activity during photodynamic treatment. Further, forms of lysozyme which were enzymatically active, but which were more sensitive to high temperature than native enzyme were produced by photodynamic treatment. It is concluded that the photodynamic inactivation of lysozyme under the conditions used results largely from the photooxidation of amino acid residues essential for the maintenance of the catalytically active conformation of the enzyme.  相似文献   

2.
Abstract. Wild-type diploid yeast has been irradiated with visible light in the presence of eosin Y to investigate the photodynamic inactivation of this model eukaryote. Light, eosin Y and oxygen were all required for substantial inactivation, and no dark recovery was detected. Long periods of irradiation were required for greater than 90% inactivation, corresponding to a very small low-dose quantum yield. Neither binding nor uptake of the dye by yeast was detected. Corrections for the photooxidative bleaching of eosin Y during irradiation indicate that bleaching causes a significant reduction in the apparent rate of inactivation. The results suggest that eosin Y acts as an extracellular sensitizer where the likelihood of damage to the cell envelope is enhanced.  相似文献   

3.
Abstract— Trypsin inactivated by u.v. radiation, gamma radiation, visible radiation in the presence of sensitizing dyes, and autolysis, was examined by the method of disc electrophoresis. Untreated Worthington twice crystallized salt-free trypsin separated into four bands which moved toward the cathode; the main band, which had the greatest mobility, contained all of the detectable tryptic activity. The next most mobile band has been assumed to be a chymotrypsin contaminant. The other two bands are of unknown nature. A progressive loss of all the bands was observed when the enzyme was inactivated by those procedures which produce a ‘damaged’ class of trypsin molecules, i.e. flavin-sensitized photooxidation, autolysis, and treatment with u.v. and gamma radiation. No loss of the main band was observed during photoinactivation with methylene blue and eosin Y as sensitizers. In this latter case, it is postulated that the trypsin inactivation products must be of such a nature that the net charge and conformation of the protein is not greatly changed, thus permitting all of the protein to remain in the same band during electrophoresis.  相似文献   

4.
Abstract— The long-lived (> 1 μsec) transients formed in the flash excitation of the representative photosensitizers methylene blue, eosin Y and pyrene have been investigated and various criteria have been used to distinguish between triplet state intermediates and chemical intermediates. Previous assignments of the triplet transients of methylene blue appeared less secure in view of the photochemical reactivity of this dye and its lack of phosphorescence. Earlier assignments of monomeric and dimeric triplet transients of methylene blue are substantiated, however, by the observations that the rate constant for quenching by oxygen is approximately 1/9th diffusion controlled and the formation rates are commensurate with singlet decay rates and by the observation of triplet-triplet annihilation. Additional evidence in support of monomer triplet assignments for methylene blue and eosin Y is provided by the effect of heavy atom quenchers Cs+, Hg2+ and T1+ on decay rates. Due to chemical reactivity, quenching by Iappears less suitable as a diagnostic test for triplet state intermediates. The effect of N3, which is known to quench singlet oxygen molecules and to alter the course of photosensitized oxidations, on the triplet decay of methylene blue, eosin Y and pyrene is also investigated.  相似文献   

5.
Abstract— Nitrate reductase from eukaryotes can be reversibly inactivated, blue light being an effective activating agent both in vitro and in vivo. Hydroxylamine proved to be a powerful inactivating agent of Ankistrodesmus braunii nitrate reductase. Irradiation with blue light of NH2OH-inactivated nitrate reductase, specially in the presence of μM amounts of FAD, promoted the recovery of the enzyme activity. Similarly, photoexcited methylene blue reactivated spinach nitrate reductase. On the other hand, in vitro nitrate reductase is highly susceptible to photodynamic inactivation caused by singlet O2. Aerobic incubation of the active spinach enzyme with either FMN or methylene blue under either blue or red light respectively led to its irreversible inactivation. Irradiation of frozen and thawed spinach leaf discs also promoted, in situ, an irreversible inactivation of nitrate reductase, provided that 62 was present in the incubation mixture. Thus, either in vitro or in situ, light can cause two quite different responses of nitrate reductase, its blue light-dependent photoactivation in a flavin sensitized reaction and its photodynamic inactivation in a singlet O2-dependent process.  相似文献   

6.
Abstract— The quantum yield of the photodynamic inactivation of lysozyme increases in the sequence acridine orange, methylene blue, proflavine and acriflavine (1:5:6:12). At least up to protein concentrations of 0.1 m M , singlet oxygen is exclusively responsible for the inactivation of the enzyme. For methylene blue, acriflavine and proflavine the quantum yields decrease considerably with increasing dye concentrations. From measurements in H2O and D2O buffer solutions it was concluded that in the case of methylene blue the effect is mainly caused by the quenching of singlet oxygen [rate constant (3–4) × 108 M −1 s−1]. For the acridine sensitizers both singlet oxygen and dye triplet quenching processes have to be taken into consideration. It has been found that all sensitizers act as competitive inhibitors of the enzymatic reaction of lysozyme. However, the dye-protein interaction near the active center cannot be responsible for the observed dye self-quenching effect.  相似文献   

7.
Abstract. In view of the recent interest in the possibility of a singlet oxygen mechanism playing an important role in photodynamic action, a number of different types of dyes were surveyed with respect to cell inactivation and induction of genetic changes in yeast cells. These comprise three xanthene dyes, three thiazine dyes, three acridine dyes and ethidium bromide. Rhodamine B in the first group and methylene blue in the second group were inactive under the present conditions. Both were found to be non-penetrable into the cell. However, since toluidine blue is active, non-penetrability is not a determining factor in photodynamic action. Ethidium bromide was inactive under the present conditions, even though it was penetrable into the cell. The survey showed that the dye must be bound to DNA in order to be active in the induction of a genetic change (gene conversion). All dyes which were active in either inactivation or induction or both were modified in their effectiveness both by the addition of N-3 (suppression) and in deuterated medium (enhancement), indicating that the sensitization mechanism involves singlet oxygen. The deuterium effect was generally observable to a lesser extent in the in vivo situation than in vitro , in particular for genetic changes by profiavine and acriflavine in which the sensitizer binds to DNA.  相似文献   

8.
Abstract— Using toluidine blue, a potent photosensitizer with a 1O2 dominated mechanism in yeast cell inactivation, it was found that addition of ascorbate to the sensitizer-cell mixture during illumination enhanced the inactivation. The enhancement required the presence of oxygen in the reaction mixture. The same enhancement was observed with methylene blue and thionine but not with xanthenes (Rose Bengal and eosin Y). The consumption of O2 and ascorbate seemed coupled in the enhancement. From the observation that the presence of ascorbate for a very short time (1 s) in the reaction mixture was enough to exhibit the same enhancement, it was concluded that the ascorbate enhancement processes are probably initiated in bulk medium, not intracellularly. The ascorbate enhancement may be a combined consequence of the high electron-accepting property of triplet toluidine blue and the strong tendency of ascorbate to act as an electron donor. The role of oxygen was not specified whether it was directly involved in the photoinactivation of cells. Addition of N J appeared to suppress the photoinacti-vation only in the higher fluence region where ascorbate had been consumed. Thus the ascorbate enhancement seems to occur under low fluence conditions and may probably be independent of the singlet oxygen mechanism.  相似文献   

9.
Methylene blue is a very strong photoactive dye that has an absorption peak (668 nm) that corresponds well to a popular low-cost diode laser. However, it has not been used in photodynamic tumor therapy and immunodiagnostics because it cannot be covalently coupled to protein. Therefore, methylene blue derivatives having a succinimido or maleimido functional group were synthesized and coupled to antibody, serum albumin and transfemn proteins. Incorporation of dye into antibody protein at high ratios (more than three per molecule) caused precipitation and loss of antibody activity. Inclusion of one or more carboxylic acid residues in the methylene blue derivative before coupling to protein alleviated the precipitation problem, and up to 36 methylene blue dye molecules could be attached to an antibody fragment using bovine serum protein as a carrier. Methylene blue derivatives and protein complexes formed from them oxidized luminol when stimulated with red light. The new dye conjugates were used in an optically pumped chemiluminescence immunoassay for α-fetoprotein. These compounds and techniques should also be useful for photodynamic tumor therapy where it is desired to attach a red-absorbing photoactive dye to antibody protein.  相似文献   

10.
Abstract— The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus grown in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes simplex.  相似文献   

11.
Inactivation properties of visible light are of increasing interest due to multiple possible fields of application concerning antibacterial treatment. For violet wavelengths, the generation of reactive oxygen species by porphyrins is accepted as underlying mechanism. However, there is still little knowledge about photosensitizers at blue wavelengths. While flavins were named as possible candidates, there is still no experimental evidence. This study investigates the photoinactivation sensitivity of Staphylococcus carnosus to selected wavelengths between 390 and 500 nm in 10- to 25-nm intervals. Absorption and fluorescence measurements in bacterial lysates confirmed inactivation findings. By means of a mathematical calculation in MATLAB®, a fit of different photosensitizer absorption spectra to the measured action spectrum was determined to gain knowledge about the extent to which specific photosensitizers are involved. The most effective wavelength for S. carnosus at 415 nm could be explained by the involvement of zinc protoporphyrin IX. Between 450 and 470 nm, inactivation results indicated a broad plateau, statistically distinguishable from 440 and 480 nm. This observation points to flavins as responsible photosensitizers, which furthermore seem to be involved at violet wavelengths. A spectral scan of sensitivities might generally be an advantageous approach for examining irradiation impact.  相似文献   

12.
Persister bacteria tolerate bactericidal antibiotics due to transient and reversible phenotypic changes. As these bacteria can limit the effectiveness of antibiotics to eradicate certain infections, their elimination is a relevant issue. Photodynamic therapy seems suitable for this purpose, but phenotypic tolerance to it has also been reported for Pseudomonas aeruginosa . To test whether any phenotypic feature could confer tolerance against both antibiotics and photoinactivation, survivors from exposures to light in the presence of methylene blue were treated with ofloxacin, an antibiotic effective on nongrowing bacteria. Susceptibility to ofloxacin was normal in these bacteria in spite of their increased ability to survive photodynamic inactivation, suggesting the absence of cross‐tolerance. It thus seemed possible to use one of these treatments to eliminate bacteria which had phenotypic tolerance to the other. To test this strategy, persister bacteria emerging from ofloxacin treatments were submitted to the action of light and methylene blue while the antibiotic remained in the bacterial suspension. Persisters lost their clonogenic ability under these conditions and the effects of the treatments seemed to be synergistic. These observations suggest that photodynamic antimicrobial therapy could be used as a complement to antibiotic treatments to eliminate persister bacteria from localized infections.  相似文献   

13.
Rational use of water is a major challenge for governments and global organizations, with easy and inexpensive interventions being sought by communities that are not supplied with drinking water. In this context, solar disinfection (SODIS) has shown great efficiency for water disinfection. To speed up the process and improve inactivation, we studied the effects of methylene blue (MB) as a photodynamic agent because of its ability to absorb visible light (red wavelength) and generate singlet oxygen as a reactive species, thereby inactivating bacteria and viruses present in water. In this study, samples of clean mineral water were artificially contaminated with Gram‐positive (Staphylococcus epidermidis or Deinococcus radiodurans) or with Gram‐negative strains (Escherichia coli or Salmonella typhimurium) and exposed to traditional SODIS or to MB‐SODIS. A lethal synergistic effect was observed when cultures were illuminated in the presence of MB. The obtained results indicate that bacterial inactivation can be achieved in a much shorter time when using MB associated with SODIS treatment. Therefore, this technique was able to provide safe water for consumption through the inactivation of microorganisms in general, including pathogens and some strains resistant to the traditional SODIS procedure, thus allowing its use in areas usually less exposed to sunlight.  相似文献   

14.
Peracetic acid was one of the most commonly used disinfectants on solid surfaces in hospitals or public places. However, peracetic acid is an environmental toxin. Therefore, safer, alternative disinfectants or disinfectant systems should be developed. Because photodynamic virus inactivation with methylene blue (MB)/light system has proven effective in blood banking, MB was selected as a photosensitizing agent, dengue virus as a model virus for enveloped RNA viruses, and an in-house fabricated narrow bandwidth light system overlapping the absorption spectrum of MB as the light source. Dengue virus was mixed with different concentrations of MB, and illuminated by the narrow bandwidth light system under different illumination distances and times. The amount of dengue virus remaining was evaluated by plaque forming assays. Results showed that the concentration of MB working solution, illumination intensity of light source, illumination distance and time were four key factors affecting efficiency of virus inactivation using the MB/narrow bandwidth light system. Dengue virus could be completely inactivated at 2.5 m in 5 min when MB >/= 1.0 microg/ml. However, when the distance reached 3.0 m, only greater concentrations of MB (2.0 microg/ml) could completely inactivate virus in a reasonably short time (20 min), and smaller concentrations of MB (1.0 microg/ml) could only completely inactivate virus using longer times (25 min). The results of this virus inactivation model indicate that our MB/narrow bandwidth light system provides a powerful, easy way to inactivate dengue viruses.  相似文献   

15.
This report concerns physiological function of mycosporine-like amino acids (MAA) as an active defense against the photooxidative effects of sunlight in marine organisms. Mycosporine glycine (MG) is a representative member of MAA family and was found to effectively suppress various detrimental effects of the Type-II photosensitization in biological systems, such as inactivation of mitochondrial electron transport, lipid peroxidation of microsomes, hemolysis of erythrocytes and growth inhibition of Escherichia coli. The presence of MG in solutions of eosin Y or methylene blue resulted in a marked decrease in the level of singlet oxygen (1O2) produced by the sensitizers under illumination. The rate constant of 1O2 quenching by MG was determined to be 5.6 x 10(7) M(-1) s(-1) by the time-resolved 1O2 luminescence decay method, which is higher than, or at least comparable to, the values for 1O2 reaction of well-known quenchers such as 1,4-diazabicyclo[2,2,2]octane and furfuryl alcohol. The results suggest that MG probably together with some other active MAA may play an important role in protecting marine organisms against sunlight damage by eliminating 1O2 generated from certain endogenous photosensitizers.  相似文献   

16.
The photodynamic effect of a photoproduct of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) was investigated in WiDr cells, a human adenocarcinoma cell line. The fluorescence excitation and emission spectra of PpIX and the photoproduct were measured. After 1, 3 or 5 min exposure of the ALA-incubated cells to 140 mW/cm2 light at 635 nm, the photoproduct — the chlorin photoprotoporphyrin (Ppp), had an emission band around 670 nm. The Ppp excitation peak at 670 nm is well separated from the PpIX peak at 635 nm. The outcome of photodynamic therapy (PDT) was determined by measuring intracellular fluorescence intensity of propidium iodide (PI) 2 h following PDT and methylene blue (MB) staining 24 h following PDT. A significant increase in the fluorescence intensity of PI was noted when the ALA-loaded cells were exposed to 670 nm light after exposure to 635 nm, indicating enhanced cell membrane inactivation induced by the photodynamic action of the photoproduct. However, the fraction of the cells that survived following the same treatment as measured by MB staining was not significantly affected based on an analysis of variance. The fluorescence of PpIX decayed significantly during 635 nm light exposure. Exposure to light at 670 nm does not lead to any photodegradation of PpIX. The fluorescence of Ppp was bleached during 670 nm light exposure. Exposure of Ppp at 670 nm gives no PpIX back. Thus, the phototransformation of PpIX to Ppp is probably not a reversible process.  相似文献   

17.
Abstract— In the presence of methylene blue, red light causes the reduction of a h-type cytochrome in particulate fractions from corn coleoptiles. Two types of difference spectra for the cytochromes in these fractions are presented: (a) red light-minus-dark in the presence of methylene blue, and (b) dithionite-reduced-minus-oxidized. Comparison of these spectra shows that photoexcited methylene blue selectively reduces a b-type cytochrome which constitutes at most only 30% of the total dithionite-reducible cytochrome present in the most active fractions. The photoreducible cytochrome has an alpha band at room temperature near 557 nm. Bleaching of methylene blue precedes cytochrome reduction under appropriate conditions, suggesting that the photoreduced dye is donating an electron to the cytochrome. This electron transfer does not involve a flavin, at least as judged by the absence of light-induced spectral changes attributable to flavins. Preliminary kinetic studies suggest that EDTA provides the pool of electrons for the reaction. The cytochrome cannot be assigned exclusively either to mitochondria or to endoplasmic reticulum, as judged by its sedimentation properties. These results and the current literature are discussed in the context of the hypothesis that this b-type cytochrome may be involved in the photoreception mechanism for blue and uv light in vivo.  相似文献   

18.
Photoinactivation of vesicular stomatitis virus (VSV) in stroma-free hemoglobin (SFH) was carried out using methylene blue (MB) or 1,9-dimethylmethylene blue (DMMB). The VSV was more sensitive to inactivation by 660 nm light with 1 microM DMMB than with the same concentration of MB. Under conditions that inactivated 6 log10 of VSV, the methemoglobin content (Met-Hb[%]) and P50 of hemoglobin were changed by 1 microM MB phototreatment but were not changed by 1 microM DMMB phototreatment. The migration of hemoglobin during electrophoresis and the activity of superoxide dismutase were not changed by MB or DMMB phototreatment. In contrast to the results obtained with DMMB at 660 nm, 580 nm irradiation of SFH with DMMB resulted in a significant increase of Met-Hb(%) under conditions that only inactivated 1.19 log10 VSV. The 580 nm irradiation primarily activates the dimer and higher-order aggregates of the dyes, while 660 nm irradiation primarily activates the monomer. These results indicate that the monomer form of DMMB can effectively inactivate viruses without damage to SFH.  相似文献   

19.
Abstract— Inactivation of Neurospora crassa conidia from wild-type and mutant strains by visible and near-UV light has been investigated in the presence and absence of photosensitizing dyes. Inactivation by near-UV is virtually unchanged by the presence of deuterium oxide or azide suggesting that, contrary to the situation with visible light and photosensitizing dyes, 1O2 is not involved in any substantial way in the formation of lethal lesions. The finding that carotenoid deficient strains are similar to wild-type strains in sensitivity to near-UV inactivation is consistent with 1O2 not being involved.
Photodynamic inactivation of conidia by visible light occurs in the presence of methylene blue (MB), toluidine blue O (TB), or acridine orange (AO). Carotenoid deficient strains are more sensitive to such inactivation only when MB and TB are used. These results support the contention that MB and TB mediated damage involves the cell membrane where carotenoids are available for quenching, whereas AO mediated damage occurs in the nucleus sequestered from the protective influence of carotenoids.
A newly isolated, lemon–yellow mutant, mapping to the al -1 locus, exhibits sensitivities to photodynamic inactivation similar to other pure-white mutants at the same locus. The sensitivity of this pigmented mutant is apparently related to insufficient unsaturation (seven to nine double bonds) of the two colored carotenoids, zeta–carotene and neurosporene, produced by the mutant.  相似文献   

20.
Photosensitization in biopolymers   总被引:1,自引:0,他引:1  
Abstract— The energetics of photodynamic action is discussed in terms of oxidation potentials of sensitizing dye intermediates. The results are compared with rate constants and quantum yields for photodynamic oxidation of iodide ion, aromatic amino acids, and lysozyme in the presence of eosin Y. The role of dye binding is discussed for the eosin-human serum albumin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号