首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.  相似文献   

2.
闫树斌  耿涛  张天才  王军民 《中国物理》2006,15(8):1746-1751
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of ~ 1×10-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of ~ 8×10-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is ~2×107 atoms/s. About 5×106 caesium atoms are recaptured in the UHV MOT.  相似文献   

3.
We report the realization of ytterbium magneto-optical trap (MOT) operating on the dipole-allowed ^1S0 - ^1P1 transition at 398.9nm. The MOT is loaded by a slowed atomic beam produced by a Zeeman slower. All seven stable isotopes of Yb atoms could be trapped separately at different laser detuning values. Over 10^7 174 Yb atoms are collected in the MOT, whereas the atom number of fermionic isotope ^171Yb is roughly 2.3 × 10^6 due to a lower abundance. Without the Zeeman slower the trapped atom numbers are one order of magnitude lower. Both the even and odd isotopes are recognized as excellent candidates of optical clock transition, so the cooling and trapping of ytterbium atoms by the blue MOT is an important step for building an optical clock.  相似文献   

4.
A significant enhancement in the number of cold atoms in an atomic-beam-loaded magneto-optical trap (MOT) for metastable krypton atoms is observed when hollow laser beams are used in a Zeeman slower instead of a Gaussian laser beam. In the Zeeman slower setup, a combination of two hollow laser beams, i.e., a variable-diameter hollow beam generated using a pair of axicon lenses superimposed on a fixed-diameter hollow beam, has been used to reduce the longitudinal velocity of the atoms in the atomic beam below the capture speed of the MOT. The observed enhancement in the number of atoms in the MOT is attributed to reduced destruction of the atom cloud in the MOT and increased cooling of the off-axis atoms in the atomic beam, resulting from the use of hollow beams in the Zeeman slower.  相似文献   

5.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

6.
We report the experimental realization of a ^88Sr magneto-optical trap (MOT) operating at the wavelength of 461 nm. The MOT is loaded via a 32 cm long spin-flip type Zeeman slower which enhances the MOT population by a factor of 22. The total laser power available in our experiment is about 300mW. We have trapped 1.6 × 10^8 ^88 Sr atoms with a 679nm and 707nm repumping laser. The two repumping lasers enhance the trap population and trap lifetime by factors of 11 and 7, respectively. The ^88 Sr cloud has a temperature of about 2.3 mK, measured by recording the time evolution of the absorption signal.  相似文献   

7.
Continuous transfer and laser guiding between two cold atom traps   总被引:1,自引:0,他引:1  
We have demonstrated and modeled a simple and efficient method to transfer atoms from a first Magneto-Optical Trap (MOT) to a second one. Two independent setups, with cesium and rubidium atoms respectively, have shown that a high power and slightly diverging laser beam optimizes the transfer between the two traps when its frequency is red-detuned from the atomic transition. This pushing laser extracts a continuous beam of slow and cold atoms out of the first MOT and also provides a guiding to the second one through the dipolar force. In order to optimize the transfer efficiency, the dependence of the atomic flux on the pushing laser parameters (power, detuning, divergence and waist) is investigated. The atomic flux is found to be proportional to the first MOT loading rate. Experimentally, the transfer efficiency reaches 70%, corresponding to a transfer rate up to 2.7×108 atoms/s with a final velocity of 5.5 m/s. We present a simple analysis of the atomic motion inside the pushing–guiding laser, in good agreement with the experimental data.  相似文献   

8.
We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5×106 atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process. Received: 15 February 2002 / Revised version: 13 August 2002 / Published online: 11 December 2002 RID="*" ID="*"Corresponding author. Fax: +45-4588/7762, E-mail: dnm@mic.dtu.dk Present address: Mikroelektronik Centret, Technical University of Denmark, Orsteds Plads, Bldg. 345 East, 2800 Kgs. Lyngby, Denmark  相似文献   

9.
A continuous cold atomic beam from a magneto-optical trap   总被引:3,自引:0,他引:3  
We have developed and characterized a new method to produce a continuous beam of cold atoms from a standard vapour-cell magneto-optical trap (MOT). The experimental apparatus is very simple. Using a single laser beam it is possible to hollow out in the source MOT a direction of unbalanced radiation pressure along which cold atoms can be accelerated out of the trap. The transverse cooling process that takes place during the extraction reduces the beam divergence. The atomic beam is used to load a magneto-optical trap operating in an ultra-high vacuum environment. At a vapour pressure of 10-8mbar in the loading cell, we have produced a continuous flux of 7×107atoms/s at the recapture cell with a mean velocity of 14 m/s. A comparison of this method with a pulsed transfer scheme is presented. Received 19 February 2001  相似文献   

10.
We report on a compact high-efficiency Cs slow atom beam source based on a retro-reflected two-dimensional magneto-optical trap (2D MOT). Employing two laser beams in an angled retro-reflected setup, we achieve 3D MOT loading rates greater than 8?×?109?atoms/s using only 20?mW of total laser power for the source.  相似文献   

11.
光钟物理系统的小型化是制约可搬运光钟及空间冷原子光钟发展的重要因素.主要介绍了小型化锶原子光钟物理系统的研制实验.采用真空腔内置反亥姆霍兹线圈,构建一个小电流、低功耗及小体积的磁光阱.实验中测得真空线圈通电电流仅为2 A时,磁光阱中心区域轴向磁场梯度可达到43 Gs/cm,完全满足锶原子多普勒冷却与俘获对磁场梯度的要求.目前已经成功将锶原子光钟物理系统体积缩小至60 cm×20 cm×15 cm,约为实验室原锶光钟物理系统体积的1/10,并且实现了锶原子的一级冷却,测得俘获区冷原子团的直径为1.5 mm,温度约为10.6 mK.锶同位素~(88)Sr和~(87)Sr的冷原子数目分别为1.6×10~6和1.5×10~5.重抽运激光707和679 nm的加入,消除了冷原子在~3P_2和~3P_0两能态上的堆积,最终可将冷原子数目提高5倍以上.  相似文献   

12.
We demonstrated laser cooling and trapping of thulium atoms at sub-Doppler temperatures in a magneto-optical trap (MOT). Up to 3 × 106 thulium atoms were trapped in the MOT at temperatures down to 25(5) μK which is approximately 10 times lower than the Doppler limit. The lifetime of atoms in the MOT varied between 0.3–1.5 s and was restricted mostly by optical leaks from the upper cooling level. The lower limit for the leaking rate was estimated to be 22(6) s−1. Due to a big magnetic moment of Tm atoms, a part of them were trapped in a magnetic trap from the quadrupole field of the MOT. We observed about 3 × 104 purely magnetically trapped atoms at temperature of 25 μK with a lifetime in the trap of 0.5 s. Also we set up a “dark” MOT consisting of six crossed hollow beams which increased the number of trapped atoms by a factor of 5 leading to 1.5 × 107 atoms at the expense of higher temperature.  相似文献   

13.
陈良超  孟增明  王鹏军 《物理学报》2017,66(8):83701-083701
采用二维磁光阱产生了-个快速~(87)Rb原子流,并在高真空的三维磁光阱中实现了~(87)Rb原子的快速俘获,进一步采用射频蒸发冷却技术实现了原子云的预冷却,然后将原子转移到远失谐的光学偶极阱中蒸发得到了玻色-爱因斯坦凝聚体.实验上可以在25 s内完成三维磁光阱的装载(约1.0×10~(10)个~(87)Rb原子),然后经过16 s的冷却过程最终在光学偶极阱中获得5.0×10~5个原子的玻色-爱因斯坦凝聚体.实验重点研究了二维磁光阱的优化设计和采用蓝失谐大功率光束对四极磁阱零点的堵塞,抑制四极磁阱中原子的马约拉纳损耗,更加有效地对原子云进行预冷却.  相似文献   

14.
Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064~nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3~s. Thus we provide a system where the atomic qubit can be coherently manipulated.  相似文献   

15.
A compact cold atom beam source based on a multistage two-dimensional magneto-optical trap (MOT) has been demonstrated and characterized. The multiple-stage design greatly reduces the overall size of the source apparatus while providing a high flux of atoms. The cold atom beam was used to load a separate MOT in ultrahigh vacuum, and we obtained an actual trap loading rate of 1.5 x 109 atoms/s while using only 20 mW of total laser power for the source. The entire source apparatus, including optics, can fit into a 4 cm x 4 cm x 13 cm volume.  相似文献   

16.
We present results of a study of frequency stabilization of a diode laser (λ = 780 nm) using the Doppler-free dichroic lock (DFDL) technique and its use for laser cooling of atoms. Quantitative measurements of frequency stability were performed and the Allan variance was found to be 6.9 × 1011 for an averaging time of 10 s. The frequency-stabilized diode laser was used to obtain the trapping beams for a magneto-optic trap (MOT) for Rb atoms. Using the DFDL technique, the laser frequency could be locked over a wide range and this enabled measurement of detuning dependence of the number and temperature of cold atoms using a relatively simple experimental set-up.  相似文献   

17.
Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.  相似文献   

18.
杨威  孙大立  周林  王谨  詹明生 《物理学报》2014,63(15):153701-153701
为了制备适于原子干涉仪实验的低温锂原子样品,开展了锂原子的塞曼减速及与磁光阱囚禁相关的实验研究.设计并实现了一种结构紧凑的腔体内冷式多级线圈叠加的塞曼减速器,将速度小于600 m/s的7Li原子减速到60 m/s,磁光阱装载速率为5×108/s,囚禁原子数目1×109个,原子团的最低温度约为220±30μK.研究了光学黏胶中7Li原子的寿命与囚禁光频率失谐量的关系.这些结果为进一步开展7Li原子亚多普勒冷却、光势阱蒸发冷却以及原子干涉仪实验奠定了基础.  相似文献   

19.
We report on master-oscillator power amplification using a broad-area laser diode (BAL) emitting at a wavelength of λ =780 nm. The master oscillator is an injection-locked single-mode diode laser delivering a seeding beam of 35 mW, which is amplified in double pass through the BAL up to 410 mW. After beam shaping and spatial filtering by a single-mode fibre we obtain a clean Gaussian beam with a maximum power of 160 mW. There is no detectable contribution of the BAL eigenmodes in the spectrum of the output light. This laser system is employed for operation of a 87Rb magneto-optical trap (MOT) and for near-resonant absorption imaging in a Bose-Einstein condensation experiment. Received: 10 April 2000 / Revised version: 13 June 2000 / Published online: 2 August 2000  相似文献   

20.
用吸收法对铯原子磁光阱中冷原子数目的测量   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了吸收法测量冷原子数的原理以及对铯原子气室磁光阱中俘获的冷原子数目的测量过程及结果. 与通常的荧光收集法相比,在原理上与静止二能级原子同共振单模光场作用的模型更加接近,同时大大减小了测量中的误差累积,提高了测量精度. 测得的冷原子数为(8±0.3)×106,同时还利用测得的阱中俘获的稳态冷原子数和磁光阱中冷原子的寿命间接获得了磁光阱的俘获率. 关键词: 激光冷却与俘获 磁光阱 冷原子数目 俘获率  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号