首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition reaction of the N-MEM-ketolactam derivative of [60]fullerene with phenyl, p-Br-phenyl, and p-MeO-phenyl hydrazines proceeds regioselectively, affording three open-cage fullerene derivatives bearing a 15-membered-ring orifice on the fullerene cage. Both experimental data and theoretical calculations were utilized for the structure determination of the new [60]fullerene adducts.  相似文献   

2.
Fullerene skeleton modification has been investigated through selective cleavage of the fullerene carbon-carbon bonds under mild conditions. Several cage-opened fullerene derivatives including three [59]fullerenones with an 18-membered-ring orifice and one [59]fullerenone with a 19-membered-ring orifice have been prepared starting from the fullerene mixed peroxide 1, C60(OOtBu)6. The prepositioned tert-butyl peroxy groups in 1 serve as excellent oxygen sources for formation of hydroxyl and carbonyl groups. The cage-opening reactions were initiated by photoinduced homolysis of the tBu-O bond, followed by sequential ring expansion steps. A key step of the ring expansion reactions is the oxidation of adjacent fullerene hydroxyl and amino groups by diacetoxyliodobenzene (DIB). Aminolysis of a cage-opened fullerene derivative containing an anhydride moiety resulted in multiple bond cleavage in one step. A domino mechanism was proposed for this reaction. Decarboxylation led to elimination of one carbon atom from the C60 cage and formation of [59]fullerenones. The cage-opened [59]fullerenones were found to encapsulate water under mild conditions. All compounds were characterized by spectroscopic data. Single-crystal structures were also obtained for five skeleton-modified derivatives including two water-encapsulated fulleroids.  相似文献   

3.
Two novel open-cage fullerene derivatives bearing a 12-membered-ring orifice on the fullerene cage have been isolated. Removal of the N-MEM protective group leads to the first open-cage [60]fullerene derivative without organic addends on the rim of the orifice. [structure: see text]  相似文献   

4.
A novel open-cage [60]fullerene derivative, having two sulfur atoms on the rim of its 13-membered-ring orifice, has been isolated and characterized. Extensive studies on the N-MEM group reactivity of this as well as other previously reported open-cage [60]fullerene derivatives led to several new open-cage [60]fullerene adducts.  相似文献   

5.
By applying high-pressure H2 to a new fullerene derivative, C63NO2SPh2Py (1), having a 13-membered-ring orifice, 100% incorporation of a H2 molecule into the fullerene cage has been achieved for the first time. This result substantiates the theoretical calculations indicating that the energy barrier required for H2 insertion through an orifice in 1 is considerably lower than that for the previously reported derivative with the largest orifice among open-cage fullerenes synthesized thus far. Upon matrix-assisted laser desorption/ionization mass spectroscopy, the removal of organic addends from the fullerene derivative 1 encapsulating H2 and restoration of the pristine C60 cage, which retains approximately one-third of incorporated H2, have been observed.  相似文献   

6.
Yu Y  Xie X  Zhang T  Liu S  Shao Y  Gan L  Li Y 《The Journal of organic chemistry》2011,76(24):10148-10153
Oxidation of the fullerenediol C(60)(OH)(2)(O)(OAc)(OOtBu)(3) with PhI(OAc)(2) yields the open-cage fullerene derivative C(60)(O)(2)(O)(OAc)(OOtBu)(3)2 with an 11-membered orifice. Compound 2 reacts with aniline to form a new open-cage derivative with a 14-membered orifice, which yields an 18-membered open-cage fullerene derivative upon addition of another molecule of aniline. Two different types of aniline derivatives with either electron-donating or electron-withdrawing substituents can be added sequentially, affording an unsymmetrical moiety in the open-cage structure. Reduction potentials of the 18-membered open-cage fullerene derivatives can be fine-tuned by changing the substituents on the aniline. The results provide new insights about the mechanism of open-cage reactions of fullerene-mixed peroxide.  相似文献   

7.
The synthesis of 10 new open-cage fullerene derivatives with a 16-membered-ring orifice is being reported. These compounds, derived from the regioselective addition reaction of an aromatic hydrazine or hydrazone to isomeric diketone derivatives of C(60), were isolated in moderate to excellent yields.  相似文献   

8.
A thermal reaction of fullerene C(60) with 4,6-dimethyl-1,2,3-triazine (4) in o-dichlorobenzene gave azacyclohexadiene-fused fullerene derivative 5, by the reaction with intermediate azete 11, and then, after flash chromatography over SiO(2), open-cage fullerene derivative 6 having an eight-membered ring orifice on the C(60) cage. Compound 6 is assumed to be formed via addition of diradical intermediate 13 to C(60). Compound 6 underwent a further photochemical reaction with singlet oxygen with the cleavage of one of the double bonds at the rim of the orifice to afford triketone derivative 8 having a 12-membered ring orifice.  相似文献   

9.
The sequential carbon-carbon bond cleaving reactions of the diketone derivative of C60 with o-phenylenediamine give a novel bowl-shaped fullerene bearing a 20-membered ring orifice. The product reversibly encapsulates a water molecule into the fullerene cage for the first time.  相似文献   

10.
We report the details of our study to synthesize a new endohedral fullerene, H2@C60, in more than 100 mg quantities by closure of the 13-membered ring orifice of an open-cage fullerene using four-step organic reactions. The 13-membered ring orifice in a previously synthesized open-cage fullerene incorporating hydrogen in 100% yield was reduced to a 12-membered ring by extrusion of a sulfur atom at the rim of the orifice, and the ring was further reduced into an eight-membered ring by reductive coupling of two carbonyl groups also at the orifice. Final closure of the orifice was completed by a thermal reaction. Purification of H2@C60 was accomplished by recycle HPLC. A gradual downfield shift of the NMR signal for the encapsulated hydrogen observed upon reduction of the orifice size was interpreted based on the gauge-independent atomic orbital (GIAO) and the nucleus-independent chemical shift (NICS) calculations. The spectral as well as electrochemical examination of the properties of H2@C60 has shown that the electronic interaction between the encapsulated hydrogen and outer C60 pi-system is quite small but becomes appreciable when the outer pi-system acquires more than three extra electrons. Four kinds of exohedral derivatives of H2@C60 were synthesized. The tendency in the shift of the NMR signal of the inner hydrogen was found to be quite similar to that observed for the 3He NMR signal of the corresponding derivatives of 3He@C60.  相似文献   

11.
The reaction of fullerene C(60) with phthalazine was studied both in solution and in the solid state using the high-speed vibration-milling technique. The reaction in solution gave open-cage fullerene derivative 1 in 44% yield by a one-pot reaction. In contrast, the solid-state reaction afforded dimeric derivative 2 as the sole product. Dimeric derivative 2 was found to undergo intramolecular [2 + 2] cycloaddtion between the two C(60) cages located in close proximity to give a new C(60) dimer 6 in quantitative yield. The structures of these new derivatives of C(60) were determined by spectroscopic methods, and the electrochemical behavior of 2 and 6 was also studied.  相似文献   

12.
An oxidative radical photoaddition of mono N-substituted piperazines to [60]fullerene was systematically investigated. Reactions of C60 with piperazines bearing bulky electron-withdrawing groups (2-pyridyl, 2-pyrimidinyl) were found to be the most selective and yielded C60(amine)4O as major products along with small amounts of C60(amine)2. In contrast, interactions of fullerene with N-methylpiperazine and N-(tert-butoxycarbonyl)piperazine were found to have low selectivity due to different side reactions. Tetraaminofullerene derivative C60(N-(2-pyridyl)piperazine)4O was found to react readily with organic and inorganic acids to yield highly water-soluble salts (solubility approximately 150 mg mL(-1)). In contrast, C60(N-(2-pyrimidinyl)piperazine)4O undergoes hydrolysis under the same conditions and results in a complex mixture of compounds with an average composition of C60(N-(2-pyrimidinyl)piperazine)2(OH)2O. Radical photoaddition of N-(2-pyridyl)piperazine to fullerene derivatives can be used as a facile route for their transformation into water-soluble compounds. Two model fullerene cycloadducts (a methanofullerene and a pyrrolidinofullerene) were easily converted into mixtures of regioisomers of A=C60(N-(2-pyridyl)piperazine)4O (A=cyclic addend) that give highly water-soluble salts under acid treatment.  相似文献   

13.
5-Arylpyrazine-2,3-dicarbonitriles 1 and 2 give 2-alkylamino-5-arylpyrazine-3-carbonitriles 3 and 5 and 3-alkylamiono-5-arylpyrazine-2-carbonitriles 4 and 6 by the substitution reaction with amines but give only 3-aminopyrazine-2-carbonitrile derivative on the reaction with ammonia. The reaction of 5-arylpyrazine-2,3-dicarbonitriles ( 1 and 2 ) with alcohols in the presence of a base gives 2-alkoxypyrazine-3-carbonitrile derivatives 9 and 13 and 3-alkoxypyrazine-2-carbonitrile derivatives 10 and 14 . The reaction of water gives two pyrazinonecarbonitrile derivatives 11 and 12 . In these reactions the aryl groups on the pyrazine ring are 3,4-dimethoxyphenyl and benzo-15-crown-5.  相似文献   

14.
Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents.  相似文献   

15.
New heteroaryl-substituted o-divinylbenzenes, 2,2'-(1,2-phenylenedivinylene)difuran (9), 2,2'-(1,2-phenylenedivinylene)bisbenzo[b]furan (10), and 2,2'-(1,2-phenylenedivinylene)bisnaphtho[2,1-b]furan (11), were prepared and irradiated at various concentrations; intramolecular photocycloaddition and intermolecular [2+2] twofold photoaddition reactions took place to give bicyclo[3.2.1]octadiene derivatives 12-14 and cyclophane derivatives 15-17, respectively. Compound 11 was the most selective of these o-divinylbenzenes, which, owing to pi-pi intra- or intermolecular complexation, gave only the exo-bicyclo[3.2.1]octadiene derivative 14 at low concentrations, and only the cyclophane derivative 17 at high concentrations.  相似文献   

16.
Tetraazathiapentalene derivative 1 reacts with heterocumulenes such as diphenylketene (2) and 2‐pyridylisothiocyanate (5) to give heterocycles 3, 6 and 7 with elimination of methylisothiocyanate. The reactions of thiadiazolopyrimidine derivatives 8a‐b with ethoxycarbonyl isothiocyanate (9) and carbon disulfide (11) gives heterocycles 10 and 12 via thermal decomposition of 1:1 cycloadducts C and D which have a hypervalent sulfur. The mechanistic and reactivity features of these reactions are described.  相似文献   

17.
13C NMR chemical shift assignments for 1,2-C60H2 (1) and a series of 13C-labeled fullerene derivatives with three-, four-, and five-membered annulated rings (2-4) were assigned using 2D INADEQUATE spectroscopy and examined for trends that correspond to the changes in strain in the fullerene cage. Chemical shifts of equivalent carbons from 1-4 show that eight carbons trend downfield (carbons 5, 7, 8, 9, 11, 15, 16, 17) and the remaining six carbons (4, 6, 10, 12, 13, 14) trend upfield with increasing ring size. While the average chemical shift is nearly constant, the dispersion is greatest when the local strain is the least, in 1,2-C60H2 (1). 13C chemical shifts are not well correlated with trends in ring size, with strain as measured by the pyramidalization angle of nearby carbons, or with the geometry of the fullerene cage. We interpret the results as evidence that subtle geometrical changes lead to modulation of the strength of ring currents near the site of addition and, in turn, the magnetic field generated by these ring currents affects the chemical shift of carbons on the far side of the fullerene core. These results highlight ring currents as being critically important to the determination of 13C chemical shifts in fullerene derivatives.  相似文献   

18.
[60]Fullerene mixed peroxide C(60) (OH)(Cl)(OOtBu) reacts with PhMe(2)SiH/B(C(6)F(5))(3) to give oxahomofullerene. Mechanistic investigation indicates that the hydroxyl group in the central pentagon ring is essential to convert the tert-butylperoxo group into a ketal moiety. Migration of the silyl group and transformation of the siloxy group into a phenyl group are observed in the deprotection of the fullerene bound siloxy group. A 12-membered open-cage fullerendione was obtained through oxidation of a [6,6]-fullerendiol. This orifice could be closed to form ketal/hemiketal moieties by BF(3)-catalyzed reaction with methanol. All of the new fullerene derivatives were characterized by spectroscopic data, and structure of the open-cage fullerendione was also confirmed by single-crystal X-ray analysis.  相似文献   

19.
The present paper reports the synthesis of a designed bisporphyrin (1), and its supramolecular complexes with C60, C70 and their derivatives, namely, tert-butyl-(1,2-methanofullerene)-61-carboxylate (2) and [6,6]-phenyl C70 butyric acid methyl ester (3) in toluene medium. C60, C70 and their derivatives undergo ground state non-covalent interaction with 1 is evidenced from absorption spectrophotometric study in which it is observed that the intensity of the Soret absorption band of 1 decreases considerably in presence of C60, C70 and their derivatives. Steady state fluorescence studies reveal efficient quenching of fluorescence of 1 in presence of fullerenes. The binding constant (K) values of the fullerene/1 complexes follows the trend: 2/1相似文献   

20.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号