首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of the phases of high-order harmonics generated upon interaction of intense laser radiation with matter is investigated. Some specific features typical of the harmonic phases in the high-frequency part of plateau (cut-off harmonic phases) are found. First, the phase difference between neighboring harmonics is a constant value. The width of the spectral range in which this regularity occurs determines the minimum duration of the attosecond pulse obtained from these harmonics by the so-called amplitude gating technique. Second, it is shown that the phase of each harmonic in the cut-off region depends linearly on the laser intensity. The proportionality coefficient is the same for all harmonics in this region and proportional to the cube of laser wavelength. Thus, this dependence is especially important for generating high-order harmonics by lasers with a wavelength of few micrometers.  相似文献   

2.
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse.Both classical theory and the quantum wavelet transform method are used to understand the physics of harmonics.By adjusting the carrier envelope phase of the fundamental field,the intensities of harmonic spectra increase and the harmonics in the plateau become regular.Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics,and with phase compensation an isolated attosecond pulse less than 30 as can be generated.  相似文献   

3.
贺海翔  郭雅慧  何国钟 《中国物理 B》2012,21(8):80202-080202
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse. Both classical theory and quantum wavelet transform method are used to understand the physics of harmonics. By adjusting the carrier envelope phase of the fundamental field, the intensities of harmonic spectra increase and the harmonics in the plateau become regular. Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics, and with phase compensation an isolated attosecond pulse less than 30 as can be generated.  相似文献   

4.
We present a method for the optimization of high-order harmonic generation based on wave-front correction of the driving laser beam. The technique exploits wave-front adaptive control by means of a deformable mirror, governed by an optimization procedure.  相似文献   

5.
钟诗阳  贺新奎  滕浩  叶蓬  汪礼锋  何鹏  魏志义 《中国物理 B》2016,25(2):23301-023301
High-order harmonic generation(HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders.This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe.  相似文献   

6.
We discuss the two mechanisms involved in high-order harmonic generation from plasma mirrors, and show that they can be clearly identified experimentally. The very different phase properties of the corresponding harmonics lead to light beams with different divergences. This can be exploited to select a particular type of harmonic by spatial filtering in the far-field.  相似文献   

7.
As a high-intensity laser-pulse reflects on a plasma mirror, high-order harmonics of the incident frequency can be generated in the reflected beam. We present a numerical study of the phase properties of these individual harmonics, and demonstrate experimentally that they can be coherently controlled through the phase of the driving laser field. The harmonic intrinsic phase, resulting from the generation process, is directly related to the coherent sub-laser-cycle dynamics of plasma electrons, and thus constitutes a new experimental probe of these dynamics.  相似文献   

8.
We extend all-optical quasi-phase matching of high-order harmonic generation into spectral regions where conventional phase matching is not possible. The high laser intensities required to generate harmonics at energy >130 eV, coupled with the resulting high level of ionization, preclude conventional phase matching in all nonlinear media. Selective enhancement factors between 40 and 150 in the flux of harmonics at photon energies around 140 eV are demonstrated using a train of two counterpropagating pulses.  相似文献   

9.
The influence of surface plasma waves on high-order harmonic generation from the interaction of intense lasers with overdense plasma is analyzed. It is shown that the surface waves lead to the emission of harmonics away from the optical axis, whereas the high-order on-axis harmonics are lowered in intensity. Our simulation results indicate that surface plasma wave generation plays a crucial role in surface high-order harmonic generation experiments. Furthermore, a novel surface plasma wave generation process different from the well-known two-surface wave decay is observed in the highly relativistic regime.  相似文献   

10.
We demonstrated a high-order harmonic generation from lowly charged ions in laser-ablation two-compound plumes (Ag-In, Ag-Mn, and Cr-Te). The high-order harmonic spectra from two-compound plumes were composed of those obtained from each target. Our results show that the control of cutoff energy and intensity of single high-order harmonics can be achieved by using the appropriate target combination.  相似文献   

11.
Experimental results and theoretical analysis on the coherent control of high-order harmonics with chirped femtosecond laser pulses are presented. The coherent control of high-order harmonic generation resulted in sharp harmonic spectra by compensating for induced harmonic chirp with the control of applied laser chirp and it was found to be crucial also in producing sharp and bright harmonics.Received: 18 November 2002, Published online: 8 July 2003PACS: 42.65.Ky Frequency conversion; harmonic generation, including higher-order harmonic generation - 32.80.-t Photon interactions with atoms - 42.65.Re Ultrafast processes; optical pulse generation and pulse compression  相似文献   

12.
We review the studies of the spatial conditions for the quasi-phase-matching in the multi-jet laserproduced silver plasma. These studies of the off-axis and on-axis spatial components of harmonics allowed the demonstration of significant enhancement of a group of harmonics in the latter case. We analyze the role of plasma emission, together with phase-mismatch, that deteriorate the conditions of high-order harmonic generation due to significant phase distortion between the interacting waves. We also discuss the resonanceinduced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. Those studies have shown that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. We conclude that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions.  相似文献   

13.
High-order harmonics are generated by coherent interaction of an intense laser and atoms or molecules[1]. With the development of the intense ultrashort pulse laser, the research of high-order harmonic generation has reached the water-window in spectral region[2] and subfemtosecond in time domain[3]. Especially, the generation and application of subfemtosecond pulse led the study of high-order harmonic generation into a completely new world[4, 5]. It has made the study of ultrafast science fro…  相似文献   

14.
本文通过数值求解含时薛定谔方程,研究了少周期非均匀激光脉冲作用下氦原子选取不同的空间位置时高次谐波的发射情况.通过对原子在纳米结构空隙中心附近区域不同空间位置上的高次谐波发射情况的研究发现,非均匀激光场中,即使原子处在中心附近的很小的区域内,原子的空间位置也直接影响着高次谐波发射.随着空间内原子坐标的增大,高次谐波的截止得到扩展,且谐波平台区并非单向扩展,而是向两端同时的扩展.通过时频分析和半经典三步模型研究了高次谐波发射的物理机制,并对获得的物理现象给出合理的解释.  相似文献   

15.
Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.  相似文献   

16.
We study numerically the generation of high-order harmonics by two-center molecules for arbitrary angles between the molecular axis and the laser polarization axis. For fixed angle, the harmonic spectrum exhibits a minimum at a frequency which is independent of the laser parameters. The amplitude of each harmonic is strongly angle dependent, and a pronounced minimum is found at the same angle where a sudden jump in the harmonic phase occurs. By calculating the spatial dependence of the harmonic amplitudes and phases, we are able to explain these effects in terms of interfering contributions from various regions within the molecule.  相似文献   

17.
通过数值求解激光驱动下电子在一维周期势场中运动的薛定谔方程,研究了晶体在激光场中发射的低阶谐波强度随激光波长的变化规律,结果表明,晶体发射低阶谐波强度随激光波长的变化规律与晶体发射高次谐波第一平台区域的变化规律不同.已有的研究表明晶体发射高次谐波第一平台区域的强度会随激光波长的增加而衰减,而我们发现晶体发射低阶谐波的强度会随激光波长的增加而增加.通过对晶体发射低阶谐波的时频分析、晶体价带能量变化与激光光子能量的关系,解释了晶体发射低阶谐波强度随激光波长增加而增加的原因.  相似文献   

18.
偶次和半整数次谐波的产生   总被引:2,自引:0,他引:2  
用数值求解一维含时薛定谔方程的方法计算了由频率分别为ω及1.5ω的激光组成的双色场2作用下的模型原子产生的高次谐波谱。发现由于双色场的相干效应,在其谐波谱中不仅产生了奇次谐波,还产生了偶次谐波和半整数次谐波。分析了各次谐波产生的原因以及对谐波转化效率产生影响的主要因素。  相似文献   

19.
In the race toward attosecond pulses, for which high-order harmonics generated in rare gases are the best candidates, both the harmonic spectral range and the spectral phase have to be controlled. We demonstrate that multilayer extreme-ultraviolet chirped mirrors can be numerically optimized and designed to compensate for the intrinsic harmonic chirp that was recently discovered and that is responsible for temporal broadening of pulses. A simulation shows that an optimized mirror is capable of compressing the duration from approximately 260 to 90 as. This new technique is an interesting solution because of its ability to cover a wider spectral range than other technical devices that have already been proposed to overcome the chirp of high harmonics.  相似文献   

20.
We utilize the dispersion property of an X-ray filter material for the generation of a single sub-50-as pulse from high-order harmonics. The attosecond pulse, formed by selecting the spectral range of high-order harmonic radiation, contains an intrinsic chirp corresponding to the quadratic phase variation during a half cycle of a laser pulse. We show that this chirp can be compensated by using the negative group-delay dispersion of a thin X-ray filter, compressing the attosecond pulse down to sub-50-as. PACS 42.65.Re; 42.50.Hz; 42.65.Ky  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号