首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous measurements of absolute concentrations of H2O and OH radicals in an atmospheric AC discharge using continuous wave cavity ringdown spectroscopy (cw-CRDS) are reported. Formation of OH radicals and plasma temperatures are characterized by optical emission spectroscopy. The concentration of OH radical at the edge of the discharge plume at 380 K is measured by the cw-CRDS technique to be 1.1 ×1015 molecule cm-3. Ringdown measurements of the H2O (120-000) band and the OH first overtone around 1515 nm enable us to determine an OH generation yield, , to be 4.8 ×10-3, where NOH and are the number densities of OH and H2O, respectively. The minimum detectable absorption coefficient of the cw-CRDS system is 8.9 ×10-9  cm-1, which corresponds to a 1σ detection limit of OH number density of 1.2 ×1013 molecule cm-3 in the discharge. This experimental approach is demonstrated for the first time ever in an AC discharge, and can be applied in general to a variety of atmospheric plasmas to help study OH formation mechanisms and OH-related plasma applications.  相似文献   

2.
The nitrogen pink afterglow was studied by optical emission spectroscopy in the DC flowing regime at a total gas pressure of 700 Pa and at the discharge current of 120 mA. The discharge was created in a Pyrex tube of 13 mm i.d. using nitrogen and argon of 99.999% purity with additional purification by Oxiclear columns and liquid nitrogen traps. The area ±3 cm around the observation point had to be cooled down to liquid nitrogen wall temperature in order to allow the study of the reactor wall temperature effect on the post-discharge. The maximum pink afterglow emission in pure nitrogen at ambient wall temperature was observed at a decay time of 6 ms. When the argon percentage in the gas mixture was increased the pink emission maximum was shifted to the later decay times. Simultaneously, the intensity of the pink afterglow decreased and at a 1:1 nitrogen-argon ratio the effect disappeared. Similar effects were also observed when the discharge tube wall around the observation point was cooled down to liquid nitrogen temperature. The argon atomic lines were only observed during the post-discharge at the highest argon concentration at a low wall temperature. The kinetic model showed that the pink afterglow quenching was connected to the decrease of the and pooling processes efficiency.  相似文献   

3.
A pulsed Nd:Yag laser, at intensities of the order of 1010 W/cm2, is employed to irradiate different thick metallic targets (Ti, Fe, Ag, and Ni) placed in vacuum. The obtained non-equilibrium plasmas are investigated with various analytical techniques. An electrostatic ion energy analyzer and different ion collectors are employed to monitor in situ the ions ejected from the plasma and to determine the core plasma temperature, the ion energy distributions and the ion angular emission. An optical spectrometer is employed to analyze the plasma corona emitted light vs. wavelength and to identify the emitted characteristic lines. The optical spectroscopy permitted to evaluate the electron temperatures and densities. Results show strong temperature and density gradients occurring in the laser-generated plasma plume.  相似文献   

4.
In the last years the ion component of a laser-produced plasma has been considered and studied as an object to provide high-density ion sources, which can be applied in many fields such as laser-induced implantation. In this work a KrF laser beam of 108 W/cm2 irradiance was focused onto single-crystalline Fe and single-crystalline Fe with 2% of Si targets and the characteristics of both free expanding laser-produced plasmas were compared. The time-of-flight (TOF) method was applied to determine the ion charge yield at various laser fluences and the ion angular spread. The analyses of TOF spectra showed a synergetic effect of the silicon admixture in target material on the Fe ions production. Besides, this admixture was also responsible of the increasing of the plasma temperature which corresponds in turn to the increasing of the average kinetic energy of the particles as well as of the more collimated ion distribution.  相似文献   

5.
Spatially resolved measurements of vibrational and rotational temperature determined from the N2(C) nitrogen bands intensities have been performed by means of optical scanner of original construction. It has been found that radial variations of studied bands are independent of pressure and discharge current under our experimental conditions, i.e. in the pressure range (100–300) Pa and for discharge current up to 40 mA. Moreover, it has been found that vibrational as well as rotational temperatures stay almost constant in the radial direction. No radial changes of both temperatures can be explained by good thermal conductivity of the positive column of DC glow discharge. This research was supported by grants: Charles University No. GAUK 194/01, Ministry of Education of Czech Republic MSM 11320002, and Grant Agency of Czech Republic GAČR 202/03/0827. The theme of presented article was included in the EU project No. G1RT-CT-2002-05083 “Plasmatech”.  相似文献   

6.
This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.  相似文献   

7.
Fluorescence measurements have been used to characterize the velocity of atoms in a femtosecond-laser-produced plasma. Nanogram amounts of a copper sample were ablated by the focused radiation (λ=775 nm) of an all-solid-state laser. The laser was operated at a pulse rate of 10 Hz with an energy of 200μJ per pulse. The microplasma expanded into a defined argon atmosphere of pressures between 0.02 and 850 mbar. Atomic fluorescence was excited in the laser plume by a dye-laser pulse with the wavelength set to the line Cu I 282.4 nm. The narrowed beam of the dye-laser was directed into the plasma at different heights above the sample surface. The fluorescence radiation was measured with an échelle-spectrometer, equipped with an intensified-charge-coupled device as the detector. The velocity depends strongly on the pressure of the ambient atmosphere and the distance from the sample surface. The highest velocity found at an argon pressure of 0.02 mbar was 1.0×106 cm s−1.  相似文献   

8.
We describe a new technique to measure the UV/visible absorption spectrum of the ablated material during the laser pulse. The technique utilizes the continuum emission from one laser produced plasma as a light source to measure the absorption properties of a second laser produced plasma which is formed on a semi-transparent target with an array of 40 μm holes. A 6 ns, 1064 nm laser was used to ablate a Ag target and the plasma absorption was measured in the range 450–625 nm for a laser fluence of 1 J cm−2. The total absorption cross-section is (0.5–1.5)×10−17 cm2 in the range 450–540 nm. By comparing the measured absorption with a calculation using the plasma spectroscopy code FLYCHK it can be concluded that, in the wavelength region examined here, the absorption is mainly due to bound-bound transitions.  相似文献   

9.
Electron densities in an atmospheric helium arc plasma have been measured with the Stark broadening parameters of helium spectral lines. The spatially distributed radiation intensities are converted to plasma emission coefficients at every wavelength by means of Abel inversion. From the inverted profiles of He I lines of 4713 ?, 5016 ?, and 6678 ? electron density has been calculated, which ranges from 0.5 ×1016 to 4 ×1016 cm-3 for a helium arc with current 200 A. Stark widths of He I lines of 3889 ? and 7065 ? are determined based on the measurements and compared with existing data.  相似文献   

10.
This study reports the results of a pilot experiment concerning observations of extreme ultraviolet emission from plasma produced by the capillary discharges. A few kA current was applied across the gas-filled alumina capillary (1 mm diameter and 8 mm long) to generate radiation in the EUV region (12–63 nm). Spectroscopic studies were carried out by means of a XEUV spectrometer which was upgraded for special lithography purposes. The results obtained from the EUV spectroscopic measurements provided information about the radiation processes from xenon and argon plasma and testifies that given capillary is an effective source of EUV emission. Additionally we showed a simulation which describes plasma dynamics parameters and dynamics of various ionization stages in capillary discharge. Our computer simulation confirmed the presence of ions, which spectra was registered in the experiment.  相似文献   

11.
We present results from simulations of 2D distributions of the electromagnetic field inside a waveguide-based axial-type microwave plasma source (MPS) used for hydrogen production via methane reforming. The studies are aimed at optimization of discharge processes and hydrogen production. We derive equations for determining electromagnetic field distributions and next determine the electromagnetic field distributions for two cases – without and with plasma inside the MPS. For the first case, we examine the influence of the length of the inner conductor of the coaxial line on electromagnetic field distributions. We have obtained standing wave patterns along the coaxial line and found resonances for certain positions of the coaxial line inner conductor. For the case with plasma inside the MPS, we perform calculations assuming that distributions of plasma parameters are known. Simulations are done for several values of maximum electron density. We have found that for values of electron density greater than strong skin effect in the plasma is observed. Consequently, plasma may be treated as an extension of the inner conductor of the coaxial line. We have used FlexPDE software for the calculations.  相似文献   

12.
Three-layered ZnO/Ag–Ti/ZnO structures were prepared using both the sol-gel technique and DC magnetron sputtering. This study focuses on the electrical and optical properties of the ZnO/Ag–Ti/ZnO multilayers with various thicknesses of the Ag–Ti layer. The ZnO thin film prepared by the sol–gel method was dried at 300°C for 3 minutes, and a fixed thickness of 20 nm was obtained. The thickness of the Ag–Ti thin film was controlled by varying the sputtering time. The Ag–Ti layer substantially reduced the electrical resistivity of the sol–gel-sprayed ZnO thin films. The sheet resistance of the Ag–Ti layer decreased dramatically and then became steady beyond a sputtering time of 60 s. The sputtering time of Ag–Ti thin film deposition was determined to be 60 s, taking into account the optical transmittance. Consequently, the transmittance of the ZnO/Ag–Ti/ZnO multilayer films was 71% at 550 nm and 60% at 350 nm. The sheet resistance was 4.2 Ω/sq.  相似文献   

13.
1D quasi-static self-consistent model of nonequilibrium nitrogen and oxygen plasma with highly non-uniform spatial distribution of the electric field strength is used for analysis of the correlation of ionization rate profile and charged particles profiles. It is shown that inside a region of local increase of the ionization rate the layers with violation of quasi-neutrality can exist. This leads to the appearance of local static electric fields. Special attention is devoted to plasma resonance regions in microwave plasma. The role of negative ions is also studied.  相似文献   

14.
The M-effect (monochromatization-effect) is a powerful tool which can give high intensity monochromatic spectra with a certain wavelength depending on the type of used gas mixtures to generate plasma state. The effect consists in the emission of a single spectral line of plasmas ignited in certain gas mixtures. The main condition to obtain the M effect is the presence of an electropositive and an electronegative gas mixture. For example, in the case of Ne+H2 monochrome radiation was obtained, the wavelength of Ne being 585.3 nm (1s2–2p5). In this paper we prove the general character of this effect, i.e. if the optical emission spectra reduced to nearly one line can be observed also in other gas mixture discharges, for example in the case of one electronegative gas and two electropositive gases. Different other mixtures, as Xe+Ne+H2 and Xe+Ar+H2 have been studied. In all these cases, the M-effect appeared without doubt.  相似文献   

15.
The plasma plume induced during ArF laser ablation of a graphite target is studied. Velocities of the plasma expansion front are determined by the optical time of flight method. Mass center velocities of the emitting atoms and ions are constant and amount to 1.7×104 and 3.8×104 m s−1, respectively. Higher velocities of ions result probably from their acceleration in electrostatic field created by electron emission prior to ion emission. The emission spectroscopy of the plasma plume is used to determine the electron densities and temperatures at various distances from the target. The electron density is determined from the Stark broadening of the Ca II and Ca I lines. It reaches a maximum of ∼9.5×1023 m−3 30 ns from the beginning of the laser pulse at the distance of 1.2 mm from the target and next decreases to ∼1.2×1022 m−3 at the distance of 7.6 mm from the target. The electron temperature is determined from the ratio of intensities of ionic and atomic lines. Close to the target the electron temperature of ∼30 kK is found but it decreases quickly to 11.5 kK 4 mm from the target.  相似文献   

16.
A spectroscopic study of the plasma plume created by a laser beam on the surface of NaCl aqueous solution is presented. Optical emission spectra are recorded and temporally analyzed; electron number density is determined from the Stark broadening of the NI nitrogen line, and temperature is obtained from relative intensity of OI oxygen lines. The intensity of an atomic line from sodium was used to quantitate its molar percentage in the Oceanic and Mediterranean sea, and calibration curves have been constructed for concentrations ranging up to 1.5%.  相似文献   

17.
For some applications of laser produced plasma it may be advantageous to implement some degree of control on the ion flux and velocity distribution in the plasma expansion. We have shown how a fast, high current discharge in a laser produced plasma leads to a dramatic increase in the plasma ionization and expansion velocity. These observations are consistent with a magnetohydrodynamic discharge model whereby the self-induced magnetic field causes radial compression of an open-ended plasma column.  相似文献   

18.
The hydroxyl radical (OH) plays an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. The present work reports the determination of the hydroxyl radicals in atmospheric dielectric barrier discharge plasmas via near infrared continuous wave cavity ring-down spectroscopy. The P-branches of OH X2Πi (ν' = 2 ←ν′′ = 0) bands were used for its number density measurements. The minimum measurable absorption coefficient is about 3 × 10-8 cm-1 in DBD plasmas. At certain experimental conditions (a.c. frequency of 70 kHz, 6700 ppm H2O in He, 1 atm), when the peak-to-peak discharge voltage varied from 6 kV to 10.4 kV, the determined OH radical concentration increased from (2.1 ± 0.1) × 1013 molecules cm-3 to (3.7 ± 0.1) × 1013 molecules cm-3. The plasma gas temperature, derived from the Boltzmann plots of OH rotational population distributions, ranged from 312 ± 10 K to 363 ± 10 K when the discharge voltage was raised in the above range. The influences of O2 and N2 addition on the production of OH radicals have been also investigated.  相似文献   

19.
In a rare-earth antiferromagnet, two neighboring magnetic ions order spontaneously in opposite directions below the Néel temperature. Especially when it is placed in an external magnetic field, the two magnetic ions react to the field in different ways, so that they usually have different magnitudes and orientations below the magnetic transition temperature. Therefore, to describe the magnetic structure of an antiferromagnet, the single-ion ferromagnetic-like model is inadequate. To solve this problem, a two-ion model for rare-earth antiferromagnets is proposed and used in this work to investigate the magnetic properties of DyNi2B2C. The magnetic susceptibility curves obtained with this model show good agreements with experimental data.  相似文献   

20.
In this paper, results of hydrogen production via methane pyrolysis in the atmospheric pressure microwave plasma with CH4 swirl are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. The plasma generation was stabilized by a CH4 swirl having a flow rate of 87.5 L min-1. The absorbed microwave power was 1.5–5 kW. The hydrogen production rate and the corresponding energy efficiency were 866 g (H2) h-1 and 577 g (H2) kWh-1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号