首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influence of dilaton field on the dynamical collapse of a charged scalar one. Different values of the initial amplitude of dilaton field as well as the altered values of the dilatonic coupling constant were considered. We described structures of spacetimes and properties of black holes emerging from the collapse of electrically charged scalar field in dilaton gravity. Moreover, we provided a meaningful comparison of the collapse in question with the one in Einstein gravity, when dilaton field is absent and its coupling with the scalar field is equal to zero. The course and results of the dynamical collapse process seem to be very sensitive to the amplitude of dilaton field and to the value of the coupling constant in the underlying theory.  相似文献   

2.
We consider some properties of TREDER'S tetrad theories, derived in I, using the field equations proposed by KASPER and LIEBSCHER . The linearized theory is considered, because the field energy becomes positive, if the energy of the weak field is a positive one. Using the dynamical equations, the field equations lead for the symmetric part of the field to the gauge invariant field equations in Hilbert gauge and to corresponding equations for the antisymmetric part. This means that in this approximation the dynamical equations replace the gauge invariance and the tetrad field corresponds to a mixture of tensor and scalar gravitons. We discuss possible experiments for showing the existence of scalar gravitons and limiting the free parameter of the theory.  相似文献   

3.
4.
We study a nonminimal derivative coupling (NMDC) of scalar field, where the scalar field is coupled to curvature tensor in the five dimensional universal extra dimension model. We apply the Einstein equation and find its solution. First, we consider a special case of pure free scalar field without NMDC and we find that for static extradimension, the solution is equivalent to the standard cosmology with stiff matter. For a general case of pure free scalar field with NMDC, we find that the de Sitter solution is the solution of our model. For this solution, the scalar field evolves linearly in time. In the limit of small Hubble parameter, the general case give us the same solution as in the pure free scalar field. Finally, we perform a dynamical analysis to determine the stability of our model. We find that the extradimension, if it exist, can not be static and always shrinks with the expansion of four dimensional spacetime.  相似文献   

5.
We use a dynamical analysis to study the evolution of the universe at late time for the model in which the interaction between dark energy and dark matter is inspired by a disformal transformation. We extend the analysis in the existing literature by assuming that the disformal coefficient depends both on the scalar field and its kinetic terms. We find that the dependence of the disformal coefficient on the kinetic term of scalar field leads to two classes of the scaling fixed points that can describe the acceleration of the universe at late time. The first class exists only for the case where the disformal coefficient depends on the kinetic terms. The fixed points in this class are saddle points unless the slope of the conformal coefficient is sufficiently large. The second class can be viewed as the generalization of the fixed points studied in the literature. According to the stability analysis of these fixed points, we find that the stable fixed point can take two different physically relevant values for the same value of the parameters of the model. These different values of the fixed points can be reached for different initial conditions for the equation of state parameter of dark energy. We also discuss the situations in which this feature disappears.  相似文献   

6.
A scalar field with a pole in its kinetic term is often used to study cosmological inflation; it can also play the role of dark energy, which is called the pole dark energy model. We propose a generalized model where the scalar field may have two or even multiple poles in the kinetic term, and we call it the multi-pole dark energy. We find that the poles can place some restrictions on the values of the original scalar field with a non-canonical kinetic term. After the transformation to the canonical form, we get a flat potential for the transformed scalar field even if the original field has a steep one. The late-time evolution of the universe is obtained explicitly for the two pole model, while dynamical analysis is performed for the multiple pole model. We find that it does have a stable attractor solution, which corresponds to the universe dominated by the potential of the scalar field.  相似文献   

7.
陈菊华  王永久 《中国物理 B》2011,20(3):30401-030401
Recently,considerable progress has been made in understanding the early universe by loop quantum cosmology.Modesto et al.investigated the loop quantum black hole(LQBH)using improved semiclassical analysis and they found that the LQBH has two horizons,an event horizon and a Cauchy horizon,just like the Reissner-Nordstr¨om black hole.This paper focuses on the dynamical evolution of a massless scalar wave in the LQBH background.By investigating the relation between the complex frequencies of the massless scalar field and the LQBH parameters using the numerical method,we find that the polymeric parameter P makes the massless scalar field decay more quickly and makes the ground scalar wave oscillate slowly.However,the polymeric parameter P causes the frequency of the high harmonic massless scalar wave to shift according to its value.We also find that the loop quantum gravity area gap parameter a 0 causes the massless scalar field to decay more slowly and makes the period of the massless scalar field wave become longer.In the complex ω plane,the frequency curves move counterclockwise when the polymeric parameter P increases and this spiral effect is more obvious for a higher harmonic scalar wave.  相似文献   

8.
Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.  相似文献   

9.
The temperature dependence of the elastic constants in C60 is quite unusual in the vicinity of the order-disorder phase transition at 260 K, in sharp contrast to simple mean-field calculations. The observed deviations seem to be a combination of dynamical processes, the influence of defects and fluctuation effects. The latter are expected to be important, since the Landau free energy admits a third order term in the order parameter. We develop field theoretic perturbation theory for general models of this type. The formalism is applied to a simple scalar model of C60 and the resulting temperature dependence of elastic constants is discussed.  相似文献   

10.
11.
In this work we perform some studies related to dark energy. Firstly, we propose a dynamical approach to explain the dark energy contents of the universe. We assume that a massless scalar field couples to the Hubble parameter with some Planck-mass suppressed interactions. This scalar field develops a Hubble parameter-dependent (thus time-dependent) vacuum expectation value, which renders a time-independent relative density for the dark energy and thus can explain the coincidence of the dark energy density of the universe. Furthermore, we assume that the dark matter particle is metastable and decays very late into the dark energy scalar field. Such a conversion of matter to dark energy can give an explanation for the starting time of the accelerating expansion of the universe. Secondly, we introduce multiple Affleck-Dine fields to the landscape scenario of dark energy in order to have the required baryon-asymmetrical universe. PACS: 95.36. + x, 95.35. + d  相似文献   

12.
The focus of this paper is to obtain anisotropic spherically symmetric solutions by means of gravitational decoupling in the background of self-interacting Brans-Dicke theory. We introduce minimal geometric deformation in the radial metric component to decouple the field equations into two arrays. The first set, governed by the seed source, is determined through metric functions of isotropic solution (Heintzmann/Tolman VII spacetimes) while the second set is solved by imposing two constraints on the anisotropic source. The unknown constants are evaluated via matching conditions at the stellar boundary. We investigate the effects of massive scalar field as well as decoupling parameter on the physical structure of anisotropic models and check them for viability through energy conditions. It is concluded that the anisotropic solutions obtained through constraint I are well-behaved for selected values of the decoupling parameter. For the second constraint, the extended Heintzmann solution is viable but anisotropic Tolman solution does not comply with dominant energy condition for higher values of the decoupling parameter.  相似文献   

13.
We study effects of noncommutativity on the phase space generated by a non-minimal scalar field which is conformally coupled to the background curvature in an isotropic and homogeneous FRW cosmology. These effects are considered in two cases, when the potential of scalar field has zero and nonzero constant values. The investigation is carried out by means of a comparative detailed analysis of mathematical features of the evolution of universe and the most probable universe wave functions in classically commutative and noncommutative frames and quantum counterparts. The influence of noncommutativity is explored by the two noncommutative parameters of space and momentum sectors with a relative focus on the role of the noncommutative parameter of momentum sector. The solutions are presented with some of their numerical diagrams, in the commutative and noncommutative scenarios, and their properties are compared. We find that impose of noncommutativity in the momentum sector causes more ability in tuning time solutions of variables in classical level, and has more probable states of universe in quantum level. We also demonstrate that special solutions in classical and allowed wave functions in quantum models impose bounds on the values of noncommutative parameters.  相似文献   

14.
We analyze the onset of classical field configurations after a phase transition. Firstly, we motivate the problem by means of a toy model in quantum mechanics. Subsequently, we consider a scalar field theory in which the system-field interacts with its environment, represented both by further scalar fields and by its own short-wavelength modes. We show that for very rapid quenches, the order parameter can be treated classically by the time taken for it to achieve its ground state values (spinodal time).  相似文献   

15.
We propose a manifestly Lorentz invariant action with a modified linear self-dual constraint, which contains a self-dual field or a free scalar field theory according to the parameter α introduced. We obtain the Floreanini-Jackiw's formulation for any values of α by imposing the linear self-dual constraint in phase space.  相似文献   

16.
We study the quasinormal modes of scalar field perturbations in the background of non-Abelian hyperscaling violating Lifshitz black holes. We find that the quasinormal frequencies have no real part so there is no oscillatory behavior in the perturbations, only exponential decay, that is, the system is always overdamped, which guarantees the mode stability of non-Abelian hyperscaling violating Lifshitz black holes. We determine analytically the quasinormal modes for massless scalar fields for a dynamical exponent \(z=2\) and hyperscaling violating exponent \(\tilde{\theta }>-2\). Also, we obtain numerically the quasinormal frequencies for different values of the dynamical exponent and the hyperscaling violating exponent by using the improved asymptotic iteration method.  相似文献   

17.
In this paper, we utilize Nambu-Jona-Lasinio (NJL) mechanism to discuss the dynamical symmetry breaking for Weinberg-Salam model. In the NJL mechanism the symmetry breaking not only is determined by the potential ofscalar field V(φ) but also has important relation with condensate of the fermion pair (φφ). We find that the coefficient of quadric term of scalar field μ2 ≥ 0 can still cause symmetry breaking by virtue of (φφ) ≠ 0, and the vacuum expected value of scalar field obeys (φ) = (φφ), i.e., the order parameter which causes phase transition is the condensate of fermion pair (φφ). We also discuss the restoration problem of SU(2) × U(1) gauge symmetry breaking by the NJL mechanism at high temperatures.  相似文献   

18.
We study the quantum constraints of a conformalinvariant action for a scalar field. For this purpose webriefly present a reformulation of the duality principleadvanced earlier in the context of generally covariant quantum field theory, and apply it toexamine the finite structure of the quantum constraints.This structure is shown to admit a dimensional coupling(a coupling mediated by a dimensional coupling parameter) of states to gravity. Invariancebreaking is introduced by defining a preferredconfiguration of dynamical variables in terms of thelargescale characteristics of the universe. In thisconfiguration a close relationship between the quantumconstraints and the Einstein equations isestablished.  相似文献   

19.
We investigate the effects of a special kind of dynamical deformation between the momenta of the scalar field of the Brans–Dicke theory and the scale factor of the FRW metric. This special choice of deformation includes linearly a deformation parameter. We trace the deformation footprints in the cosmological equations of motion when the BD coupling parameter goes to infinity. One class of the solutions gives a constant scale factor in the late time that confirms the previous result obtained via another approach in the literature. This effect can be interpreted as a quantum gravity footprint in the coarse grained explanation. The another class of the solutions removes the big bang singularity, and the accelerating expansion region has an infinite temporal range which overcomes the horizon problem. After this epoch, there is a graceful exiting by which the universe enters in the radiation dominated era.  相似文献   

20.
We consider the evolution of covariant and gauge invariant linear density perturbations of scalar field cosmologies using a dynamical systems? approach. We find conditions for which the perturbations decay in time, so that the spacetime approaches a homogeneous solution which inflates, for quadratic and exponential potentials. This pre-inflationary homogenization is found to be stable in the potentials? parameter spaces. Furthermore, in each case, we determine the minimum size of the resultant homogeneous patch and show that, for quadratic potentials, the resulting inflationary solutions include those with the necessary number of e-folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号