首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gong B  Liu Y  Xu Y  Lin T 《Talanta》1997,44(6):1003-1007
A new matrix modifier composed of calcium and chromium[VI] was proposed for the determination of tributyltin (TBT) in toluene extract from sea water containing sediment by graphite furnace atomic absorption spectrometry (GFAAS). Fourteen inorganic and organic compounds (barium, calcium, chromium[VI], lanthanum, magnesium, nickel, palladium, strontium, calcium-chromium[VI], calcium-strontium, nickel isocaprylate, 5%-, 10%-aqueous solution of ascorbic acid and toluene-saturated solution of ascorbic acid) as a matrix modifier were comparatively studied and a matrix modifier composed from 5 microg of calcium and 1 microg of chromium[VI] was found to give the best performance. The interference effects of co-existing elements in sea water containing sediment (aluminium, iron, magnesium, sodium and strontium) were studied. TBT in eight toluene extracts was determined by GFAAS with the proposed matrix modifier. The relative standard deviation was 3.0% for 63 ng ml(-1) of TBT (n = 11). The recoveries were 88-104%. The characteristic mass was 7 pg. The linearity range was 0-250 ng mg(-1).  相似文献   

2.
The European Union has banned chromium(VI) compounds in electrical and electronic equipment (EEE), such as chromate conversion coating films. Chromium(III) compounds are not banned. Using Raman spectroscopy without any preparation, we distinguished chromium(VI) oxide from chromium(III) oxide and chromium(III) hydroxide in chromate conversion coating films. Raman bands of chromium(VI) oxide were detected in films at around 1000 and 500 cm(-1), while chromium(III) compounds generated no bands in the region between 2000 and 200 cm(-1). The analysis took about 1 min, whereas the usual diphenylcarbazide-colorimetric method for analyzing chromium(VI) compounds takes about 10 h.  相似文献   

3.
In this work, different analytical speciation schemes have been used to study the reduction of Cr(VI) by a chromate-resistant strain of filamentous fungi Ed8 (Aspergillus sp), indigenous to contaminated industrial wastes. As demonstrated previously, this strain has the capability to reduce chromate present in the growth medium without its accumulation in the biomass, yet the reduced chromium end-products have not been characterized. Liquid growth medium, initially containing 50 mg L(-1) Cr(VI), was analyzed for Cr(III)/Cr(VI) and for total Cr at different time intervals (0-24 h) after inoculation with fungi. Three hyphenated procedures, based on the Cr(III)-EDTA formation and species separation by anion-exchange or ion-pairing reversed-phase chromatography with ICP-MS or DAD detection were used. The results obtained for Cr(VI) in each case were consistent, demonstrating efficient reduction of chromate during 24 h of Ed8 growth. However, pre-column complexation with EDTA did not ensure complete recovery of the reduced forms of chromium in the above procedures. An alternative speciation scheme, based on extraction of Cr(VI)-benzyltributylammonium bromide (BTAB) ion pairs into chloroform and subsequent determination of residual chromium by ICP-MS has provided evidence on the effective conversion of chromate into reduced chromium species in the growth medium. The results indicate the feasibility of using Ed8 strain for chromate bioremediation purposes. Analytically it can be concluded that speciation of chromium in biological systems should not be limited to its two most common oxidation states, because the actual reduced chromium species are not converted quantitatively to Cr(III)-EDTA.  相似文献   

4.
《Analytical letters》2012,45(11):2007-2014
Abstract

A simple and inexpensive method for determining chromium (VI) in drinking water by spectrophotometry after preconcentration with sodium dodecyl sulphate (SDS) coated alumina column is described. Chromium(VI) is reacted with diphenylcarbazide (DPC) and the Cr-DPC complex is quantitatively adsorbed onto a SDS coated alumina column from 800 ml of sample solution. The complex is then eluted with a 8 ml mixture of methanol, acetone and hydrochloric acid and determined by spectrophotometry. Total chromium can be determined after oxidation of chromium (III) to chromium (VI) by KMnO4. The relative standard deviation (10 replicate analyses) at the 10 μg l?1 of chromium (VI) and 10 μg l?1 of total chromium were 3.5% and 3.4% and corresponding limits of detection (based on 3 σ) were 0.040 μg l?1 and 0.033 μg l?1, respectively.  相似文献   

5.
Real-time kinetic measurements of hexavalent chromium binding to fused silica surfaces functionalized with carboxylic acid and methyl ester terminal groups are performed in situ using resonantly enhanced surface second harmonic generation (SHG) at pH 7 and 300 K. These functional groups were chosen because of their high abundance in humic acids and related biopolymers. Kinetic measurements are conducted in the submonolayer regime using chromate solution concentrations ranging from 1 x 10(-6) to 2 x 10(-5) M. The adsorption rates were analyzed using the standard Langmuir model and the Frumkin-Fowler-Guggenheim model. The desorption kinetics are consistent with a first-order process. These results indicate that hexavalent chromium mobility in carboxylic acid- and ester-rich soil environments increases with decreasing chromate concentrations. Based on the measured half-lives of the adsorbed Cr(VI) species, remobilization of bound hexavalent chromium due to natural or anthropogenic events that lower the chromate concentration in the aqueous phase can occur within minutes.  相似文献   

6.
A simple and convenient method has been developed for the speciation of chromium(III) and chromium(VI) in aqueous solutions using a sodium dodecyl sulphate coated alumina micro-column (1.5 cm x 5 mm i.d.) and graphite furnace-atomic absorption spectrometry (GF-AAS). Under the optimized conditions (pH 0.6, adjusted with hydrochloric acid; flow rate, 1 ml min(-1)) chromium(VI) is retained on the column and chromium(III) is collected and determined by GF-AAS. Total chromium is directly determined by GF-AAS and chromium(VI) is calculated by difference. The relative standard deviations (10 replicate analyses) at the 20 mug l(-1) level for chromium(III) and chromium(VI) and at the 40 mug l(-1) level for total chromium were 1.4%, 3.6% and 1.8%, and the corresponding limits of detection (based on 3sigma) were 0.57 mug ml(-1), 0.61 mug ml(-1) and 0.35 mug l(-1) respectively. No large interference effects have been observed from other investigated species and the method has been successfully applied to a range of water samples.  相似文献   

7.
Kataoka M  Nishimura K  Kambara T 《Talanta》1983,30(12):941-944
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 μM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.  相似文献   

8.
Adam J  Pribil R 《Talanta》1971,18(1):91-95
Highly selective extraction of chromate from slightly acidic solutions (0.1-0.2M sulphuric acid) with a chloroform solution of trioctylamine (Alamine 336-S) or trioctylmethylammonium chloride Aliquat 336-S) is described. Many metals such as iron, nickel, cobalt, copper, alluminium, zinc, are not extracted, even if present in large concentrations. Coextraction of vanadium(V) and uranium(VI) is prevented by addition of sodium chloride. Traces of extracted molybdenum are scrubbed with ammonium oxalate. Final determination of chromium is based on measurement of the absorbance of the extract at 445-450 nm.  相似文献   

9.
Chromium is a primary drinking water contaminant in the USA with hexavalent chromium, Cr(VI), being the most toxic form of the metal. As a required step in developing a revised state drinking water standard for chromium, the California Department of Health Services recently issued a new Public Health Goal (PHG) of 2.5 microg/l for total chromium and 0.2 microg/l for Cr(VI). Hexavalent chromium can be determined (as chromate) by ion chromatography, as described in US Evironmental Protection Agency Method 218.6; however, the method as originally published does not allow sufficient sensitivity for analysis at the California PHG level of 0.2 microg/l. Modification of the conditions described in Method 218.6, including the use of a lower eluent flow-rate, larger reaction coil, and larger injection volume, significantly increases the method sensitivity. The modified method, which uses IonPac NG1 and AS7 guard and analytical columns, an eluent of 250 mM ammonium sulfate-100 mM ammonium hydroxide operated at 1.0 ml/min, a 1000 microl injection volume, and postcolumn reaction with 2 mM diphenylcarbazide-10% methanol-0.5 M sulfuric acid (using a 750 microl reaction coil) followed by UV-Vis detection at 530 nm, permits a method detection limit for chromate of 0.02 microg/l. This results in a quantitation limit of 0.06 microg/l, which is more than sufficient for analysis at the California PHG level. Calibration is linear over the range of 0.1-10 microg/l and quantitative recoveries (>80%) are obtained for chromate spiked at 0.2 microg/l in drinking water. The modified method provides acceptable performance, in terms of chromate peak shape and recovery, in the presence of up to 1000 mg/l chloride or 2000 mg/l sulfate.  相似文献   

10.
Hexavalent chromate reductase was characterized and was found to be localized in the cytoplasmic fraction of a chromium-resistant bacterium Pannonibacter phragmitetus LSSE-09. The Cr(VI) reductase activity of cell-free extract (S12) was significantly improved by external electron donors, such as NADH, glucose, acetate, formate, citrate, pyruvate, and lactate. The reductase activity was optimal at pH 7.0 with NADH as the electron donor. The aerobic and anaerobic Cr(VI)-reduction enhanced by 0.1 mM NADH were respectively 3.5 and 3.4 times as high as that without adding NADH. The Cr(VI) reductase activity was inhibited by Mn2+, Cd2+, Fe3+, and Hg2+, whereas Cu2+ enhanced the chromate reductase activity by 29% aerobically and 33% anaerobically. The aerobic and anaerobic specific Michaelis–Menten constant K m of S12 fraction was estimated to be 64.95 and 47.65 μmol L−1, respectively. The soluble S150 fractions showed similar activity to S12 and could reduce 39.7% and 53.4% of Cr(VI) after 1 h of incubation aerobically and anaerobically while the periplasmic contents showed no obvious reduction activity, suggesting an effective enzymatic mechanism of Cr(VI) reduction in the cytoplasmic fractions of the bacterium. Results suggest that the enzymatic reduction of Cr(VI) could be useful for Cr(VI) detoxification in wastewater.  相似文献   

11.
Summary Chromium(VI) is one of the major pollutants of waters and unfortunately, at the present time, it cannot be determined with a simple and fast method. The use of the ultraviolet multiwavelength absorptiometry (UVMA) for chromium determination is very convenient for that purpose because of the well known absorption properties of chromium. Two methods are proposed which lead to different sensitivity. The first one needs hydroxide sodium addition for the measurement of the chromate form and has a detection limit of 4 g/l. The second does not use any reagent and determines directly both dichromate and chromate forms, whose sum gives the concentration of chromium(VI). This last procedure is faster but the characteristics are slightly less precise. These proposed methods have been compared with a reference method, for natural waters and treated wastewaters, with good agreement. These procedures can be used for water quality monitoring.  相似文献   

12.
4-(5-Nonyl)pyridine, a new liquid anion exchanger, has been studied for the extraction of chromium(VI) from sulphuric acid solutions. The optimal acidity is 0.1–1 M, depending on the concentration of chromium. Common anions have little effect on extraction in concentrations up to 0.1 M. Reducing agents such as ascorbic acid and thiosulphate prevent extraction at concentrations above 0.1 M. Separation of chromium(VI) from fission products was achieved.  相似文献   

13.
A method for the pre-treatment of acid samples prior to ion chromatography is described. In a strong acid medium, Cr(VI) oxidizes diphenylcarbazide, the resulting products forming a stable complex which can be transferred in a methanolic medium by solid-phase extraction using polyethylene as sorbent. This methanolic sample solution can be injected directly into a chromatographic system with a silica-based column. The separation and determination of the chromium complex can be performed by HPLC-using a mobile phase of 15% (v/v) acetonitrile containing 1 mmol/L tetrabutyl ammonium hydroxide (TBAH). The detection limit is estimated to be 2 microg/L chromate and the linear range is at least 0.05-2 mg/L chromate.  相似文献   

14.
A Ando  K Hisada  I Ando 《Radioisotopes》1976,25(10):630-636
In order to investigate the tumor affinity radioisotopes, chromium (51Cr), molybdenum (99Mo), tungsten (181W), selenium (75Se) and tellurium (127mTe)--the elements of group VI in the periodic table--were examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. Seven preprarations, sodium chromate (Na251CrO4), chromium chloride (51CrCl3), normal ammonium molybdate ((NH4)299MoO7), sodium tungstate (Na2181WO4), sodium selenate (Na275SeO4), sodium selenite (Na275SeO3) and tellurous acid (H2127mTeO3) were injected intravenously to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations. The radioactivities of the tumor, blood, muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor) were calculated in percent of administered dose per g-tissue weight. All of seven preparations did not have any affinity for malignant tumor. Na251CrO4 and H2127mTeO3 had some affinity for the kidneys, and Na275SeO3 had some affinity for the liver. Na2181WO4 and (NH4)299MoO4 disappeared very rapidly from the blood and soft tissue, and about seventy-five percent of radioactivity was excreted in urine within first 3 hours.  相似文献   

15.
Groundwater samples collected from a tannery contaminated area were analyzed for chromium species with the objective of investigating the interference of Cr(III)-organic complexes in the determination of Cr(VI) using APDC–MIBK extraction procedure. The contribution of Cr(III), Cr(VI) and Cr(III)-organic complexes towards total chromium ranged between 2 and 61%, 27 and 86%, and, 6 and 23%, respectively. The Cr(III)-organic complexes were not extractable by APDC–MIBK, however, HNO3 digestion released the organic bound Cr(III). Interference of organic bound Cr(III) in Cr(VI) determination due to MIBK soluble Cr(III) was not observed. Significant difference between total dissolved chromium determined after appropriate digestion procedure, and the sum of dissolved Cr(III) and Cr(VI) determined indicates the presence of the Cr(III)-organic complexes. MIBK extraction of samples without APDC is an useful way to check the extractability of organic bound Cr(III). The presence of soluble Cr(III)-organic complexes thus add complexity to chromium speciation analysis by APDC–MIBK procedure.  相似文献   

16.
Girard L  Hubert J 《Talanta》1996,43(11):1965-1974
We have studied the speciation of chromium (VI) in stainless-steel welding dusts. The approach used for the analysis of Cr(VI) and total Cr relies on a flow-injection analyzer (FIA) equipped with two different sequential detectors. The system measures Cr(VI). by colorimetry (with 1,5-diphenyl carbohydrazide) and total chromium content by flame atomic absorption spectroscopy (AAS). The extraction of the samples of welding-fume dusts is achieved in a buffer solution (acetic acid and sodium acetate at pH 4). This extraction procedure gives a 96% recovery of chromium (VI). The FIA-AAS system that has been described is also more sensitive, has a lower detection limit (0.005 mug ml(-1)) and gives a better precision (< 1%) than other equivalent systems that have been previously described.  相似文献   

17.
The construction and performance characteristics of a novel chromate ion-selective membrane sensor are described and used for determining chromium(III) and chromium(VI) ions. The sensor is based on the use of a rhodamine-B chromate ion-associate complex as an electroactive material in a poly(vinyl chloride) membrane plasticized with o-nitrophenyloctyl ether as a solvent mediator. In a phosphate buffer solution of pH 6 - 7, the sensor displays a stable, reproducible and linear potential response over the concentration range of 1 x 10(-1) - 5 x 10(-6) mol l(-1) with an anionic Nernstian slope of 30.8 +/- 0.5 mV decade(-1) and a detection limit of 1 x 10(-6) mol l(-1) Cr(VI). High selectivity for Cr(VI) is offered over many common anions (e.g., I-, Br-, Cl-, IO4-, CN-, acetate, oxalate, citrate, sulfate, phosphate, thiosulfate, selenite, nitrate) and cations (e.g., Ag+, Ca2+, Sr2+, Co2+, Ni2+, Cu2+, Mn2+, Fe2+, Zn2+, Cd2+, Al3+, Cr3+). The sensor is used for determining Cr(VI) and/or Cr(III) ions in separate or mixed solutions after the oxidation of Cr(III) into Cr(VI) with H2O2. As low as 0.2 microg ml(-1) of chromium is determined with a precision of +/-1.2%. The chromium contents of some wastewater samples were accurately assessed, and the results agreed fairly well with data obtained by atomic absorption spectrometry.  相似文献   

18.
The reactions of glyoxylic and pyruvic acids by chromium (VI) have been studied in the presence of perchloric acid. Each reaction is first order with respect to chromium (VI), α-keto acid and hydrogen ion concentrations. The addition of sodium perchlorate to the reaction mixture had no effect on the rates but sodium chloride and sodium dihydrogen phosphate have retarding influences. Manganous ions increase the rate of reaction. The activation parameters are evaluated and tentative mechanisms for the oxidation reactions are discussed.  相似文献   

19.
The applicability of catalytic end-point indication to redox titrations is demonstrated by the determination of 3–30 μmol of ascorbic acid (in 22.5 ml of solution) with standard dichromate solution; the chromium(VI)-catalyzed oxidation of o-dianisidine with hydrogen peroxide serves as indicator reaction. Oxidizing substances, such as vanadium(V), thallium(III) or cerium(IV) can be determined by addition of excess of ascorbic acid and back-titration.  相似文献   

20.
The focus of the investigations presented is to evaluate local alterations caused by chloride ions affecting thin, magnetron-sputtered CrN layers. Scanning-probe microscopy and analysis techniques are used for this estimation. Thin CrN layers were deposited by reactive magnetron sputtering. They were investigated in electrochemical scanning tunnelling microscopy (EC STM) by cyclic voltammetry in 1 mol L(-1) NaCl. Simultaneously, the surface topography changes were recorded with STM.Above 100 mV the anodic oxidation leads to formation of chromium(III) hydroxide and at sample potentials above 350 mV oxidation of Cr(OH)(2) and Cr(OH)(3) towards chromium(VI) as a soluble chromate starts. Transpassive dissolution of the coating takes place above 900 mV. Yellow colour of the electrolyte is a visible sign for the formation of chromium(VI). Changes of the surface topography indicate the formation of surface layers at anodic potentials. At cathodic potentials increase in current is measured due to the reduction of chromium(III) hydroxide to divalent chromium and metallic chromium. Roughness of surface topography increases.Follow-up explorations with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic-force microscopy (AFM), scanning tunnelling microscopy/scanning tunnelling spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) not only evidence the formation of various chromium oxides, but also indicate the existence of chromium hydroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号