首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ceramic powder mixture corresponding to the stoichiometric ratio of YBa1.95K0.05Cu3Oy superconducting ceramic with 10% w/w Ag was heat treated at 950°C for 3 h in flowing oxygen. The resultant superconducting powder was consolidated in a silver tube by the explosive compaction technique (pre-heat treated ceramic). The same fabrication technique, i.e. explosive compaction, was employed to the initial stoichiometric powder mixture, without prior heat treatment and the green product was subsequently subjected to a series of heat-treating cycles (920°C, 70 h), in order to obtain the required superconducting properties (post-heat treated ceramic). The microstructure and physical properties of the pre- and post-heat treated ceramics were analyzed and compared using various characterization techniques. X-ray diffraction performed on the pre-heat and post-heat treated ceramics indicated that maximum 123-phase content retained in the former case (pre-heat treated ceramic), whilst DC magnetic susceptibility measurements have shown the characteristic Meissner shielding effect at 99 and 92 K, respectively. Furthermore, the pre-heat treated compacted billet was characterized by a critical current density, Jc equal to 2800 A/cm2 at 77 K after suitable annealing at 850°C for 10 h in oxygen stream.  相似文献   

2.
Mechanochemical effects on the formation of Mg---O---Ti complex and microwave dielectric properties of MgTiO3 oxides were studied using several different starting materials. Single phase MgTiO3 powder was obtained after heating (900 °C, 2 h) the mechanically activated precursor from a mixture of two unitary powders, magnesium hydroxide and anatase (MP). Formation of MgTiO3 on subsequent thermal treatment was significantly accelerated by incipient mechanochemical interaction. The Q value of the ceramics sintered at 1350 °C for 2 h from MP was higher than those of three other ceramics due to the uniformity of the microstructure and phase.  相似文献   

3.
We present Raman spectra of the ZrO2-12 mol% CeO2 ceramic heat- treated at 1000°C, 1200 °C and 1420 °C in the flowing mixture gas of H2+Ar. Raman spectra reveal the tetragonal to monoclinic phase transition and three Raman bands are observed at 279 cm-1, 410 cm-1 and 456 cm-1 at temperatures above 1200 °C; it turned out that these Raman bands are assigned to neither of the monoclinic phase nor the tetragonal phase. It is suggested that the starting ceramic undergoes phase separation in the heat-treatments in the mixture gas of H2+Ar; the phase separation probably takes place as a result of the valence change of Ce during the heat-treatments, which leads to destabilization of the original tetragonal phase.  相似文献   

4.
Thin films of Cu, Y and BaF2 are co-condensed in ultrahigh vacuum onto SrTiO3 (1 0 0)-substrates at room temperature without any additional oxygen supply. It is found that the temperature of the ex situ fluorine-oxygen exchange reaction in flowing wet oxygen essentially determines whether the Y1Ba2Cu3O7 − x-phase (Tex = 850°C) or the Y2Ba4Cu8O16 − x-phase (Tex = 800°C) forms or any mixture of both phases in between. Small-angle X-ray diffraction verifies the strictly epitaxial growth of the superconducting phases. The variation of the composition around the ideal 1,2,3-stoichiometry affects only the superconducting and normal conducting properties which are measured using the four-probe Montgomery method. The values of the normal state resistivity and its temperature dependence are discussed in combination with a reduced cross section of the conduction paths in the films.  相似文献   

5.
The annealing characteristics and the superconducting properties of Tl2Ca2Ba2Cu3O10 thin films sputter-deposited onto yttrium- stabilized ZrO2 substrate at up to 500°C from two stoichiometric oxide targets are reported. The films deposited at 400–500°C were found to require a lower post-annealing temperature than the films deposited at lower temperatures to attain the highest Tc superconducting state, due to a more pronounced Ba diffusion toward the substrate as indicated by their secondary ion mass spectrometry depth profiles. The highest Tc achieved tends to degrade with increasing substrate temperatures, a zero resistance Tc of 121 and ≈90 K, respectively, being observed for the films deposited at -ambient temperature and at 500°C. The formation of the highest Tc phase (Tl2Ca2Ba2Cu3O10) generally is associated with a sheet type of crystal growth morphology with smooth and aligned surfaces which can be obtained only from the films capable of sustaining prolonged annealing at 900°C. Annealing at lower temperatures (≈860°C) results in the formation of rod or sphere type of morphologies with rough and randomly oriented crystals and the lower Tc phases such as Tl2Ca1Ba2Cu2O8.  相似文献   

6.
We have used neutron powder diffraction to investigate the defect structure of HgBa2CuO4+δ. An interstitial oxygen defect in the Hg plane is the primary doping mechanism. A superconducting transition temperature, Tc onset, of 95 K is achieved when ≈0.06 oxygen atoms per formula unit are incorporated at this site by annealing the sample at 500°C in pure oxygen. Annealing in argon at 500°C lowers the oxygen content in this site to ≈0.01 and results in a Tc of 59 K. The neutron powder diffraction data give evidence for a second defect in the Hg plane which we conclude involves the substitution of copper for about 8% of the mercury and the incorporation of additional oxygen (≈0.1 atoms per formula unit), presumably bonded to the copper defects. In the present samples, the concentration of this defect does not vary with synthesis conditions and its contribution to doping is, therefore, unclear. The structure of the compound is the same at room temperature and superconducting temperatures.  相似文献   

7.
A new procedure for the preparation of Tl2Ba2CaCu2O8-δ is presented. In the first step stoichiometric amounts of Cu(NO3)2·3H2O, Ba(OH)2·H2O, CaO and Tl2O3 are reacted in a closed alumina crucible at 760°C to form a mixture of Tl- 2212, CuO, CaO and other oxide phases. In the second step this material is milled, pelletized and fired in a gold-sealed alumina crucible at 860–900°C for three to eight hours. Three batches of Tl-2212 prepared by this method were investigated showing less than 1% loss of thallium while Tc was close to 110 K. Rietveld refinements using time-of-flight neutron-diffraction data demonstrate that the method produces pure material in a reproducible way and that the materials are substoichiometric with respect to oxygen (δ=0.3). Investigations using electron diffraction and high-resolution electron microscopy indicate the absence of stacking faults.  相似文献   

8.
A powder of nominal composition (ZrO2)0.886(Sc2O3)0.104(Al2O3)0.01 was synthesized by spray drying with the purpose of testing the performance of solid oxide fuel cells containing scandia-stabilized zirconia (ScSZ) as electrolyte. The phases resulting from calcination and sintering at different temperatures were investigated by XRD, impedance and Raman spectroscopy. At sintering temperatures of 1200–1400 °C nearly equal amounts of cubic and rhombohedral ScSZ were detected, whereas heat treatment higher than 1500 °C led to a cubic single-phase material. A preliminary reaction mechanism of phase formation is proposed with respect to the various results depending on heat treatment.  相似文献   

9.
The chemical compatibility between YBa2Cu3O6.8 (Y123) and Pt, Ag or Au was studied using quasi-infinite diffusion couples which were encapsulated and annealed at 650 to 800°C for 5 to 80 h. The phase formation at the interface was analyzed in cross sections of these couples using optical and scanning electron microscopy together with energy- and wavelength dispersive X-ray microanalysis. In addition, bulk powder mixtures of Y123 with Pt, Ag or Au were annealed at 800°C for 100 h and phase analysis was performed using X-ray diffraction.

At the Pt/Y123 interface a reaction zone grows slowly but decisively at 800°C. Its microstructure is multiphase with Y---Cu-oxides and a fine-grained dispersion of Y2BaCuO5 (Y211) with Ba---Cu-oxides. Additional Ba---Pt oxides and other phases are seen in powder mixtures annealed for longer times. Barium is suspected to diffuse out from the superconductor along grain boundaries from as deep as 1 mm, causing the decomposition of Y123 into Y---Cu-oxides in the depleted regions. Ag and Au form a stable contact at the interface to Y123 with no reaction zone or new phases. Interdiffusion at the Ag/Y123 interface at 800°C was too low to be clearly detected. In contrast, Au diffuses very fast into Y123 and at 800°C the solubility is 4.2 mass% Au. Yttrium and barium diffuse much slower into the (Au) phase, Cu diffusion was not detected. Weak traces of decomposition products, mostly Y211 and Ba---Cu-oxides, were observed in bulk powder mixtures of Y123 with Ag or Au annealed at 800°C for 100 h in closed capsules. These decomposition products are considered to be due to the high oxygen pressure in the closed capsule, exceeding the stability limit of Y123, and not due to the reduction of Y123. Both Ag and Au are virtually non-reactive with Y123.  相似文献   


10.
In this study, we will develop the influences of the excess x wt% (x=0, 1, 2, and 3) Bi2O3-doped and the different fabricating process on the sintering and dielectric characteristics of 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3 ferroelectric ceramics with the aid of SEM and X-ray diffraction patterns, and dielectric–temperature curves. The 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 ceramics are fabricated by two different processes. The first process is that (Na0.5Bi0.5)TiO3 composition is calcined at 850 °C and BaTiO3 composition is calcined at 1100 °C, then the calcined (Na0.5Bi0.5)TiO3 and BaTiO3 powders are mixed in according to 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions. The second process is that the raw materials are mixed in accordance to the 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions and then calcining at 900 °C. The sintering process is carried out in air for 2 h from 1120 to 1240 °C. After sintering, the effects of process parameters on the dielectric characteristics will be developed by the dielectric–temperature curves. Dielectric–temperature properties are also investigated at the temperatures of 30–350 °C and at the frequencies of 10 kHz–1 MHz.  相似文献   

11.
The effects of varying the temperature and duration of the post-deposition anneal in watersaturated oxygen were investigated for YBa2Cu3O7−δ films of varying thickness. The films were produced by laser ablation from pressed powder targets consisting of BaF2,Y2O3, and CuO mixtures. This technique produces superconducting films with a highly textured surface. The films were fabricated on SrTiO3 substrates and were analyzed with X-ray diffraction, scanning electron microscopy, and temperature dependent resistivity. Critical current density (Jc) measurements were performed in magnetic fields up to 1 T. For film thickness on the order of 900 nm, completely c-axis oriented films were obtained with a 60 min anneal at 850°C. Thinner films required less annealing, either shorter times or lower temperatures, to achieve similar results, indicating that the optimal annealing conditions are dependent on film thickness.  相似文献   

12.
The variations of the high angle 00 peak-shape by means of X-ray l scans of the 00l fundamental reflections were investigated in detail for a highly oriented Bi2Sr2CaCu2Oy (Bi2212) crystal with sufficiently small intrinsic mosaicity and the same crystal annealed in air at 250, 300, 400, 600, and 750°C for 20 h in consequence. For the first time, we observed a new additional reflection almost overlapped original 00l fundamental reflection at annealing temperature below 400°C by X-ray diffraction measurement, which shows that there coexisted two sets of lattice periodicity in the c-direction of the annealed crystal. The new additional reflection appeared at 250°C and disappeared at 400°C. Its intensity was increased at 300°C. The measurements of the AC susceptibility, c-axis parameter and full width at half maximum (FWHM) of the 00 peaks showed that the new additional reflection was associated with the oxygen diffusion in CuO2 planes and the changes of strain field. The results provide the new experimental evidence that the structural distortion is more sensitive to the oxygen diffusion in CuO2 planes than to that in Bi–O layers.  相似文献   

13.
The effects of dopants on the electrical conductivity of the perovskite-type oxide LaInO3 have been investigated. Replacement of La by Sr is the most effective way to enhance the conductivity of LaInO3, whereas Ca substitution for In is rather difficult due to the large difference in the ion radii. The optimum composition is La0.9Sr0.1InO3−δ whose maximum conductivity is 7.6×10−3 S cm−1 at 900°C. The electrical conductivity of La0.9Sr0.1InO3−δ has been measured over a wide range of oxygen partial pressure from pO2=1 to 10−25 atm. P-type and n-type behavior at high and low oxygen partial pressure have been observed, respectively, while at intermediate oxygen partial pressures, the electrical conductivity changes only slightly with the oxygen partial pressure. The concept of a single layer solid oxide fuel cell based on a La0.9Sr0.1InO3−δ ceramic pellet has been tested. A maximum power density of 3 mW cm−2 at 800°C was achieved when dilute H2 and air were used as fuel and oxidizing agent, respectively.  相似文献   

14.
0.9Pb(Zn1/3Nb2/3)–0.1BaTiO3 (0.9PZN–0.1BT) of perovskite structure has been successfully prepared by mechanically activating mixed oxides of PbO, ZnO, Nb2O5, BaO and TiO2. The novel mechanochemical technique skips the phase-forming calcination step at an intermediate temperature that is always required in both the conventional solid state reaction and chemistry-based precursor routes. Ultrafine 0.9PZN–0.1BT particles of perovskite structure were formed when the constituent oxides were mechanically activated for more than 10 h. The powder was sintered to a density of 96% theoretical density at 1100°C for 1 h. The sintered 0.9PZN–0.1BT exhibits perovskite structure and a peak dielectric constant of 8800 at the Curie temperature of 60°C when measured at a frequency of 100 Hz.  相似文献   

15.
Single crystals of NdBa2Cu3O7−δ (Nd123) have been successfully grown by the top-seeded solution-growth (TSSG) method in 1%, 21% and 100% oxygen partial pressure atmosphere ((P(O2) = 0.01 atm, P(O)2) = 0.21 atm and P(O2) = 1.00 atm). Ba---Cu---O solvent with a Ba to Cu ratio of 3:5 was used in a Nd2O3 crucible. Nd is supplied by the reaction between the molten solvent and the Nd2O3 crucible. Compositions of Nd123 single crystals grown in different oxygen partial pressure atmospheres were analyzed by inductivity coupled plasma atomic emission spectrometry (ICP-AES) and confirmed to be Nd:Ba:Cu = 1.01:1.97:3.00 for P(O2) = 0.01 atm, Nd:Ba:Cu = 1.07:1.95:3.00 for P(O2) = 0.21 atm and Nd:Ba:Cu = 1.10:1.90:3.00 for P(O2) = 1.00 atm, respectively. The Nd123 single crystals grown in different oxygen partial pressure atmospheres were annealed in a pure oxygen gas flow, and the temperature dependence of the DC magnetization for these crystals was measured using a superconducting quantum interference device (SQUID) magnetometer. The Nd123 single crystal grown in P(O2) = 0.01 atm, and annealed at 340°C for 200 h showed a steep superconductive transition at 96 K. On the other hand, the Nd123 crystal grown in P(O2) = 0.21, 1.00 atm and, annealed at 340°C for 200 h exhibited a broad transition at 92 K for P(O2) = 0.21 atm and at 88 K for P(O2) = 1.00 atm, respectively. Therefore for Nd123 single crystal production with high quality superconductive characteristics, a low oxygen partial pressure atmosphere during crystal growth is found to be effective for minimizing the substitution of Nd ions into Ba sites.  相似文献   

16.
The perovskite-type oxides were synthesized in the series of Ln1−xSrxCoO3(Ln = Sm, Dy). The formation of solid solutions in Dy1 − xSrxCoO3 was limited, compared with that in Sm1 − xSrxCoO3. The electrical conductivities of the sintered samples were measured as a function of x in the temperature range 30 to 1000 °C. The highest conductivity of around 500 S/cm at 1000 °C was found in Sm0.7Sr0.3CoO3. The reactivity of all the samples with YSZ was examined at 800–1000 °C for 96 h. The Sr-doped perovskite oxides were more reactive with YSZ and produced SrZrO3 at 900 °C after 96 h. However, no reaction product between SmCoO3 and YSZ was observed at 1000 °C for 96 h. The cathodic polarization of the oxide electrodes, sputtered on yttria stabilized zirconia (YSZ), was studied at 800–1000 °C in air. SmCoO3 shows no degradation of the electrode performance at higher temperatures. The thermal expansion measurements on the sintered samples were carried out from room temperature to 1000 °C. Large thermal expansion coefficients were found in these samples.  相似文献   

17.
Superconducting transition temperature (Tc), Ca content and oxygen deficiency are studied on GaSr1.8Ca0.2Yb1xCaxCu2O7 (x≤0.35). Superconducting samples with Tc=52 K are prepared after the annealing at 20 MPa of oxygen. The Tc is reduced through a slight oxygen loss accompanied by annealing in air above 650°C. The oxygen loss suggests the presence of short Cu–O chains in the GaO4 slab. The formal valence of planar Cu required for the appearance of superconductivity depends on oxygen and Ca contents. The critical formal Cu valences are 2.105 and 2.125 for the samples annealed in air at 600°C and at 835°C, respectively. The values are higher than those of usual high-Tc superconductors. This can be explained by a high concentration of localized holes in the CuO5 slab.  相似文献   

18.
Smooth, superconducting films of Bi2Sr2CaCu2O8+° have been prepared by reactive sputtering from elemental targets in the presence of ozone. The influence of substrate temperature, deposition rate, and ozone pressure on the resulting films are discussed. Films deposited on SrTiO3 substrates are c-axis oriented and featureless for substrate temperatures below 710°C. Above this temperature, small inclusions of CuO appear. Films on MgO exhibit mixed a-axis and c-axis orientation below about 710°C, and inclusions of CuO above this temperature. The temperature at which this transition occurs increases with increasing deposition rate. Tc increases and then decreases sharply with decreasing oxygen content. The oxygen partial pressure corresponding to the maximum Tc of 77 K is well above the thermodynamic stability limit for Bi2Sr2CaCu2O8+°, suggesting that an optimum carrier concentration has been achieved for these films.  相似文献   

19.
A centimeter size single crystal of La2−xSrxCuO4+δ (volume=1.32 cm3) with xSr=0.08 has been grown by the travelling-solvent floating-zone (TSFZ) method using a double ellipsoidal-type optical furnace as the heat source. The crystallised phase was checked solvent free by X-ray powder diffraction experiments, the crystal dimensions and quality being investigated by X-ray and neutron Laüe techniques. Several rocking curves of the Bragg peaks were performed by neutron diffraction giving a full width at half maximum (FWHM) of 0.200° for (006) reflection and clearly showing the presence of twin domains as expected for such an orthorhombic structure. The superconducting critical temperature of the as-grown crystal under 2 oxygen bar was determined by SQUID measurements with Tc=18–20 K. Thermal treatments at different oxygen pressures were carried out showing no significant improvement of the transition sharpness and the Tc value. Normal state susceptibility was also measured from 6 to 800 K for two different field orientations and can be interpreted as an antiferromagnetic insulating state behaviour. The resistivity measurements display an insulating behaviour perpendicular to the CuO2 planes and a metallic behaviour in the planes, with a high anisotropy ratio Rc/Rb350 at room temperature and a zero resistivity achieved at 27 K in both directions. The specific heat measurements have revealed no anomalies in the temperature range 15–300 K.  相似文献   

20.
The interactions at the evolving RuO2/titanium interface have been studied by LEED, AES and XPS. Titanium films of up to 5 monolayers were evaporated onto well ordered and ion sputtered ruthenium dioxide crystal surfaces of (110) and (100) orientation. Stabilization of the surface oxygen content under thermal treatment in UHV (up to 600°C) with increasing titanium coverage was established. After extended (up to 4 h) annealing in O2 at 600°C an epitaxial ordering of TiO2 on RuO2(110) was observed. The (1 × 1) LEED patterns from the epitaxial layer exhibit a reduced background level when compared to the RuO2 substrate itself. These findings are correlated with the XPS data and are interpreted in connection with the disappearance of the defect RuO2 phase in the surface layer of the RuO2. The appearance of the (1 × 2) surface reconstruction at the RuO2(100)/Ti interface is discussed in the context of maximum cation coordination by oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号