首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature tunable photonie bandgap fiber (PBGF) is demonstrated by an index-guiding photonic crystal fiber filled with high-index liquid. The temperature tunable characteristics of the fiber are experimentally and numerically investigated. Compression of transmission bandwidth of the PBGF is demonstrated by changing the temperature of part of the fiber. The tunable transmission bandwidth with a range of 250nm is achieved by changing the temperature from 30℃ to 90℃.  相似文献   

2.
The properties of waveguide modes in hollow-core microstructure fibers with two-dimensionally periodic and aperiodic claddings are studied. Hollow fibers with a two-dimensionally periodic cladding support air-guided modes of electromagnetic radiation due to the high reflectivity of the cladding within photonic band gaps. Transmission spectra measured for such modes display isolated maxima, visualizing photonic band gaps of the cladding. The spectrum of modes guided by the fibers of this type can be tuned by changing cladding parameters. The possibility of designing hollow photonic-crystal fibers providing maximum transmission for radiation with a desirable wavelength is demonstrated. Fibers designed to transmit 532-, 633-, and 800-nm radiation have been fabricated and tested. The effect of cladding aperiodicity on the properties of modes guided in the hollow core of a microstructure fiber is examined. Hollow fibers with disordered photonic-crystal claddings are shown to guide localized modes of electromagnetic radiation. Hollow-core photonic-crystal fibers created and investigated in this paper offer new solutions for the transmission of ultrashort pulses of high-power laser radiation, improving the efficiency of nonlinear-optical processes, and fiber-optic delivery of high-fluence laser pulses in technological laser systems.  相似文献   

3.
The physical principles of photonic-crystal fibers with a photonic band gap tunable in the visible and near-IR spectral ranges are demonstrated. Direct numerical integration of the Maxwell equations with the use of the finite-difference time-domain technique reveals the possibility of creating holey fibers with a photonic-crystal cladding whose photonic band gap lies within the frequency range characteristic of widespread solid-state femtosecond lasers. The fabrication of holey fibers with a pitch of the two-dimensional periodic structure of the cladding less than 500 nm allowed us to experimentally observe a photonic band gap in transmission spectra of holey fibers tunable within the range of 930–1030 nm. This photonic band gap is satisfactorily described within the framework of the proposed numerical approach based on the finite-difference time-domain method.  相似文献   

4.
Optical fibers with cores made of germanosilicate, phosphosilicate, and nitrosilicate glasses are loaded by molecular hydrogen at a pressure of 10 MPa and room temperature. Then, preloaded fibers are kept in a hydrogen atmosphere at the same pressure and various fixed temperatures up to 700°C and the transmission spectra of the fibers are measured in situ at a constant temperature with equal time intervals. The kinetics of the chemical interaction between hydrogen and the silica is determined by analyzing an increase in the optical absorption at the overtones of OH and NH groups.  相似文献   

5.
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV–Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6–4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.  相似文献   

6.
We propose and demonstrate a fiber in-line Mach–Zehnder interferometer using thin-core fibers. This in-line interferometer is composed of a short section of thin-core fiber inserted between two single mode fibers (SMF), and demonstrated as a strain and temperature sensor in this study. A strain sensitivity of ?1.83 pm/με with a measurement range of 0?2000 με, and the temperature sensitivity of ?72.89 pm/°C with a temperature variation of 50 °C are achieved. We also discussed that the influence of strain and temperature change on the relative power ratios among the excited cladding modes in thin-core fibers.  相似文献   

7.
Tunable devices based on photonic-crystal (PhC) structures are employed in optical sources, detectors, and filters. We present the design and optimization of a wavelength-selective tunable filter with potential applications to the wavelength-division-multiplexing (WDM) systems. We analyze the design of a 1D tunable photonic-crystal filter, where tunability is achieved either by changing the temperature or the angle of incidence. The device is designed in a multilayered structure of silicon/silica (Si/SiO2) with a defect in the middle. Based on the induced variation of optical parameters introduced by an external change of temperature, we analyze the effects of these changes in temperature on the transmission of the optical filter at different angles of incidence. We show that the position of the resonance peak has a linear dependence on temperature and the square of the angle of incidence. A linear regression provides a slope of d??/dT?=?+0.06?nm/°C and d??/d?? 2?=??0.104?nm/degree2 around the transmission wavelength ???=?1.55???m. We obtain the corresponding field patterns and the transmission spectra using the transfer-matrix-method (TMM) simulations. We show the ability to tune the optical properties of the photonic-crystal filter elaborated by changing two parameters: the angle of incidence for selecting the wavelength and the temperature for fine tuning of the wavelength, which can be applied in integrated optics.  相似文献   

8.
The effect of annealing in a hydrogen atmosphere on the transmission spectra of GaP:N light-emitting diodes at temperatures of 550, 570, and 590 °C has been investigated. Temperature-induced rearrangement of defects has been observed. The band gap of the material studied is determined. The dependence of the transmission and difference transmission spectra on the annealing temperature and the effect of annealing on the electroluminescence spectra are shown.  相似文献   

9.
The transmission spectra of finite photonic-crystal Si/a-SiO2 structures with a defect have been calculated by the transfer-matrix method, taking into account the frequency dependence of the dielectric permittivity. It is found that the allowance for the dispersion of the silicon refractive index relatively weakly affects the position of the stop bands in the photonic-crystal structures under consideration but significantly changes the position and magnitude of the transmission peaks due to the presence of a defect in the structure.  相似文献   

10.
F. A. Egorov 《Technical Physics》2013,58(11):1646-1650
The characteristics of fiber-optic oscillation frequency sensors of deformation and temperature that employ the thermal fluctuation resonant oscillations in the SMS(M) fiber structures (sensitive elements that represent oscillation systems with distributed parameters based on series-connected single- and multimode step-index fibers) are developed and studied. The measurements of the fluctuation oscillations are based on the amplitude-phase modulation of the optical wave in the multimode oscillating section due to variations in the path-length difference and tunneling of interfering beams. Accuracies of temperature and relative deformation measurements of ±2°C and ±10?5, respectively, are demonstrated. The estimation of the ultimate measurement sensitivity of the resonance frequency is based on the approximate calculation of the Allan variance that shows a possibility of the above sensors with temperature and deformation threshold sensitivities of 0.001°C and 10?8, respectively.  相似文献   

11.
Polymer composites of a polyester resin matrix filled with short palm tree lignocellulosic fibers were studies by means of dielectric spectroscopy in the frequency range 0, 1–100 kHz and temperature interval from 40 °C to 200 °C. Three relaxations processes were identified, namely the orientation polarization imputed to the presence of polar water molecules in Palm fiber, the relaxation process associated with conductivity occurring as a result of the carriers charges diffusion noted for high temperature above glass transition and low frequencies, and the interfacial relaxation that is attributable to the accumulation of charges at the Palm fibers/polyester interfaces.  相似文献   

12.
《Composite Interfaces》2013,20(5):473-479
Continuous Nextel 720 fibers reinforced SiC composites with PyC interface are fabricated by LPCVI at 1000°C for 200 h using SiCH3Cl3 as precursor. The mechanical properties at RT and 1300°C are measured by three-point bending. The microstructures of the interface are characterized by TEM. The results indicate the composites have the metal-like behavior of fracture, whether they are at RT or high temperature. The RT and 1300°C strengths are 310 MPa and 140 MPa, respectively. The RT and 1300°C strains are 0.32% and 0.12%, respectively. The loss of flexural strength and strain of the Nextel 720/SiC composites at high temperature result from stronger residual thermal stress caused by the mismatch of CTE between fibers and matrix. A gap appears between fibers and PyC interface after the 1300°C test, which could be resulted from 7.7% compressive strain of PyC interface caused by the residual thermal stress and 0.1% sintering shrinkage of Nextel 720 fiber.  相似文献   

13.
Optical properties of a one-dimensional photonic-crystal film with a lattice period of ≈380 nm formed by electrochemical etching of an aluminum foil are investigated. Experimental data on the spectra of transmission and reflection in the region of the first, second, and third stop bands of anodic photonic crystal of aluminum oxide are compared with a theoretical dependence obtained from the well-known dispersion relation. The possibility of creating selective narrow-band optical filters based on mesoporous one-dimensional photonic crystals is analyzed. The conditions of enhancement of an electromagnetic field of laser radiation at 532 nm under normal incidence on a photonic-crystal surface are established. The possibility of generation of optical harmonics under the conditions of sharp increase in the effective field of the driving radiation in a mesoporous photonic crystal of anodic aluminum oxide filled with lithium iodate is analyzed.  相似文献   

14.
《Solid State Ionics》2006,177(13-14):1237-1242
A hybrid supercapacitor was fabricated with NiO and activated carbon as positive and negative electrode, PVA–KOH–H2O containing 5 M KOH as alkaline polymer gel electrolyte, respectively. Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements were applied to investigate the dependence of the hybrid supercapacitor on the temperatures from − 20 to 40 °C. The results demonstrated that the capacitive performance of the hybrid supercapacitor turned even better with the temperatures rising up from − 20 to 40 °C. The increase of temperature improved the conductivity of the alkaline polymer gel electrolyte, decreased the charge-transfer resistance and made the better contact at the interface between the electroactive materials and the alkaline gel electrolyte at higher operating temperature. The maximum of the specific capacitance and energy density of the hybrid supercapacitor were 73.4 F/g and 26.1 Wh/kg at the current density of 0.1 A/g and the operating temperature of 40 °C, respectively.  相似文献   

15.
The technology and properties of light-emitting structures based on silicon layers doped by erbium during epitaxial MBE growth are studied. The epitaxial layer forming on substrates prepared from Czochralski-grown silicon becomes doped by oxygen and carbon impurities in the process. This permits simplification of the Si: Er layer doping by luminescence-activating impurities, thus eliminating the need to make a special capillary for introducing them into the growth chamber from the vapor phase. The photoluminescence spectra of all the structures studied at 78 K are dominated by an Er-containing center whose emission line peaks at 1.542 μm. The intensity of this line measured as a function of the substrate and erbium dopant source temperatures over the ranges 400–700°C and 740–800°C, respectively, exhibits maxima. The edge luminescence and the P line observed in the PL spectra are excited predominantly in the substrate. The erbium atom concentration in the epitaxial layers grown at a substrate temperature of 600°C was studied by Rutherford proton backscattering and exhibits an exponential dependence on the erbium source temperature with an activation energy of ~2.2 eV.  相似文献   

16.
This paper experimentally demonstrated a singlemode–coreless–singlemode (SCS) fiber structure-based fiber ring cavity laser for strain and temperature measurement. The basis of the sensing system is the multimodal interference occurs in coreless fiber, and the transmission spectrum is sensitive to the ambient perturbation. In this sensing system, the SCS fiber structure not only acts as the sensing head of the sensor but also the band-pass filter of the ring laser. Blue shift with strain sensitivity of \(\sim\) ?2 pm/με ranging from 0 to 730 με and red shift with temperature sensitivity of \(\sim\) 11 pm/°C ranging from 5 to 75 °C have been achieved. Experimental results also show the proposal has great potential in using long-distance operation. The fiber ring laser sensing system has a optical signal to noise ratio (OSNR) more than 50 and 3 dB bandwidth less than 0.05 nm. The result shows that the coreless fiber has no improvement of the temperature and axial strain sensitivity. However, compared to the common singlemode–multimode–singlemode fiber structure sensors, the laser sensing system has the additional advantages of high OSNR, high intensity and narrow 3 dB bandwidth, and thus improves the accuracy.  相似文献   

17.
Abstract

A para-aramid fiber whose main chain contained heterocyclic units was prepared by low temperature copolycondensation, wet-spinning, and high temperature thermal treatment. The prepared fibers (named F-368) and two commercial aramid fibers, K49 (Kevlar 49, Dupont de Nemours Co., USA) and APMOC (Kamenskvolokno and Tver’khimvolokno, Russia), were characterized and analyzed in detail. Infrared spectroscopy (IR) and wide-angle X-ray diffraction (WAXD) were employed to characterize their chemical and aggregation structures, respectively. The results showed the introduction of heterocyclic units into the wholly para-aromatic polyamide backbone of K49 in the F-368 and APMOC reduced the crystallinity significantly. The tenacity of F-368 and APMOC were 32.2 and 30.5cN/dtex, which were about 68% and 59% higher than that of K49, respectively. Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to investigate their thermal properties; the results indicated that these aramid fibers showed exceptional thermal properties with glass transition temperatures of 240–260?°C, and decomposition temperatures at 510–560?°C, both in nitrogen and air. The TGA results also showed the decomposition mechanism of K49 and the heterocyclic aramid fibers in nitrogen and air were different. The decomposition temperature of K49 was higher than that of the heterocyclic copolyaramid fibers both in nitrogen and air. On the contrary, the char yields of the heterocyclic copolyaramid fibers at 800?°C were higher than that of K49 in both nitrogen and air.  相似文献   

18.
O.K. Rice  D.R. Chang 《Physica A》1975,81(1):161-162
The density dependence of the proton magnetic shielding constants in liquid methanol and ethanol has been accurately measured at a temperature of 29.2°C and at external pressures between 1 and 2500 bar. For comparison, a measurement in the vapor coexisting with the liquid at 29.2°C has also been made. For the carbonyl protons the results appear to be in qualitative agreement with previous measurements of the density dependence of the shielding constants in methane and ethylene. The results are discussed theoretically on basis of the Buckingham electric field model.  相似文献   

19.
We report the temperature dependence of the vacuum ultraviolet emission from the xenon homonuclear molecule in the temperature range 138-23°K. At the highest and lowest temperatures the spectrum consists of a single band peaked at 1720 and 1750Å respectively. At intermediate temperatures, 56–83° K, a band peaking at about 1640Å dominates the spectrum. This phenomenon is ascribed to temperature induced structural modifications in solid xenon.  相似文献   

20.
We propose and experimentally demonstrate switchable and tunable transmission characteristics of a Mach–Zehnder interferometer comb filter based on thermal operation. Its temperature characteristics are investigated to reveal a shift in the peak wavelength position from 0.003 to 0.004 nm/°C and a tunable range of wavelength spacing of 0.76–0.90 nm for maximum and minimum effective lengths, respectively. This configuration provides the unique advantages of an all-fiber structure, tunable wavelength spacing, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, and low polarization sensitivity. It is relatively simple to fabricate and expected to have applications in temperature fiber optic sensors and multiwavelength fiber laser sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号