首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fluorescence spectroscopic and solvatochromic behavior of Sulfisoxazole, a sulfa drug with antimicrobial activities, in various pure solvents of different polarity and hydrogen bonding capability is reported. The fluorescence emission spectrum of sulfisoxazole was found to be solvent polarity dependent, where a notable red shift in emission maximum was observed with increasing solvent polarity as well as hydrogen bonding capability. The effects of the latter two solvent parameters were quantitatively investigated using the methods of Lippert–Mataga and solvatochromic comparison method (SCM) that is based on the Kamlet-Taft equation. Particularly, the Lippert–Mataga method was applied to estimate the dipole moment of the excited state (μe) upon plotting Stokes shift versus solvent polarizability (Δf), where a value of 11.54 Debye was obtained. On the other hand, applying the multiple regression analysis to the SCM method revealed that solvent polarizability (π*) and hydrogen-bond donor capability (α) approximately equally stabilize sulfisoxazole in the excited state with minor destabilization contribution by the hydrogen-bond acceptor capability (β). These findings revealed that the excited state of sulfisoxazole is stabilized by polar solvents, indicating that this drug molecules exhibit larger dipole moment in the excited state than in the ground state, which in turn implies that a potential intramolecular charge transfer (ICT) occurs after excitation.  相似文献   

2.
Absorption as well as fluorescence emission studies of p-dimethylaminobenzaldehyde (DMABA) in solvents with different polarity have been reported by varying the concentration of the solute. Dual fluorescence corresponding to the non-polar (NP) and twisted intramolecular charge transfer (TICT) states has been observed. The optimized geometry of DMABA was evaluated using ab-initio theory at various levels. The optimized geometries of the hydrogen bonded complexes with the solvent molecules were also calculated with the theory Hartree Fock at the basis set 6-31+G (HF/6-31+G). The results have been used to understand the structure of the molecule and the spectral changes in terms of hydrogen bonding and solute–solvent interaction.  相似文献   

3.
Anomalous (reverse) substituent-induced 13C nuclear magnetic resonance chemical shifts at the carboxyl carbon (δco) in meta-substituted benzoic acids have been studied for 11 substituents having varying electronic effects in 4 aprotic (nonhydroxylic) solvents of varying polarity by employing different dual substituent parameter models. The regression results for apolar aprotic solvents provide a strong evidence for through space π-polarization mode of transmission of reverse meta-substituent effects on the carboxyl carbon in benzoic acids. The results for dipolar aprotic solvents indicate significant specific solvation of π-polarized forms of the acids. The study showed further that an apolar aprotic solvent has a distinct preference over a dipolar aprotic one for investigating intrinsic substituent effects on chemical shifts in aromatic molecules.  相似文献   

4.
本文在杂化密度泛函理论水平上研究了溶剂对2-(N-甲基)氨基-5-硝基吡啶分子非线性光学性质的影响.在溶剂中,构造了包括氢键作用的超分子体系,在优化结构的基础上分别研究了由极化连续模型模拟的溶剂与该分子的长程相互作用、溶剂与该分子的氢键相互作用以及溶剂与包括氢键作用的超分子体系整体的相互作用对分子的几何结构、非线性光学性质、紫外吸收光谱和电荷分布等特性的影响.结果表明,溶剂中分子电偶极矩、线性极化率和第一超极化率都增大,而溶剂与溶质分子通过氢键形成的超分子结构与单体有着明显区别.因此,氢键对分子结构和性质的影响较大,从而将明显的影响该类分子的非线性光学性质.  相似文献   

5.
Solvatochromic and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone (DHDMAQ) have been investigated using optical absorption and fluorescence emission techniques. Optical absorption spectra of DHDMAQ in different solvents show the intra molecular charge transfer band in the region 400–550nm. The observed blue shift with solvent polarity indicates the delocalisation of the excited state, owing to reduction in quasiaromaticity of the chelate rings formed by intra molecular hydrogen bonds, due to electrostatic or hydrogen bonding interaction. This is also confirmed by the observed low oscillator strength and the transition dipole moment. The observed quantum yield of DHDMAQ in different solvents is due to the inter molecular hydrogen bond in the excited state in addition to the intra molecular hydrogen bond. It also reveals from the low oscillator strength, which indicates that the radiative decay is low. Excited state dipole moment of DHDMAQ is calculated by solvatochromic data and it shows a lower value than ground state dipole moment. The preferential solvation parameter shows that in dimethyl formamide (DMF) + ethanol mixture, the DHDMAQ is preferentially solvated by ethanol in DMF rich region and by DMF in ethanol rich region. In the case of DMF + dichloromethane mixture DHDMAQ is preferentially solvated by DMF.  相似文献   

6.
通过对香豆素343(C343)在不同溶剂中的稳态吸收光谱、稳态荧光光谱和时间分辨荧光光谱的分析,研究了溶剂对C343的光谱性质的影响,并获得了光谱特性与溶剂极性之间的依赖关系. 吸收光谱峰值的红移随着溶剂极性的增加而发生较小的变化. 然而,荧光光谱的峰值对溶剂的极性却很敏感,并随着溶剂极性参数f(ε,n)的增加呈线性增长. 这是由于C343激发态电荷分布的变化导致了它在极性溶剂中第一激发单重态能级的变化. 用溶剂效应测量法和量子化学计算方法确定了C343最低激发态的偶极矩,这两方法所得的结果一致. C343在不同溶剂中的时间分辨荧光光谱研究表明荧光寿命随着溶剂极性的增加而增加,即从甲苯溶液的3.09 ns线性地增加到水溶液中4.45 ns;荧光寿命延长的根源可归因于C343与氢键给体溶剂之间的分子间氢键相互作用.  相似文献   

7.
Abstract

The electronic absorption spectra of nicotinamide were measured in seventeen aprotic solvents. The solvatochromic method is used to unravel solvent polarity and hydrogen bonding effects on π ? π? transition. Solvent effects are rationalized in terms of the solvatochromic parameters: π?, δ, α, and β.  相似文献   

8.
The structural, electronic and photophysical properties of three new asymmetric, highly fluorescent difluoroborondipyrromethene (BODIPY) dyes, bearing an amino or an acetamido group at position 3 of the chromophoric core, have been studied in different apolar, polar and polar/protic solvents. The presence of the 3-amido group extents the delocalization of the π-system, leading to bathochromic shifts in the absorption and fluorescence bands, as predicted by quantum mechanic calculations. The 3-amino dye shows photophysical properties highly dependent on the solvent polarity and acidity, and is characterized by a hypsochromic shift of its absorption band, with regard to the corresponding acetylated dye, as well as a low fluorescence quantum yield in acid media with proton concentration lower than 4 × 10−4 M. In media with higher proton concentration, the BF2 bridge group of the 3-amino dye is removed, yielding the corresponding non-fluorescent dipyrromethene precursor. These results suggest that the 3-amino dye could be used as a fluorescence probe for the study of the acidity of different environments.  相似文献   

9.
Absorption and luminescence spectra of a 4-nitro-4-dimethylaminobutadiene molecule in binary solvents have been experimentally obtained and investigated. Formation of the absorption spectra is associated with a chromophore grouping of the molecule in a bent state, while the bathochromic shift of the band in the absorption spectrum is consistent with the theory of dipole-dipole interaction of a bipolar molecule with solvent molecules. The fluorescence spectrum and its form and bathochromic shift depend not only on the solvent polarity but also on the proportion and kind of binary mixture of solvents. For a certain proportion of the binary solvent, radiation has been generated at λ=610 nm in pumping by a nitrogen laser. Reported at the International Conference on Luminescence, November, 22–24, 1994, Moscow. Belarusian State University, 4, F. Skorina Ave., Minsk, 220080, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 1, pp. 119–121, January–February, 1997.  相似文献   

10.
The selection of solvent for preparing a working electrode (and to act as the electrolyte) is known to influence the efficiency of dye-sensitized solar cells. In this topical review, results taken from a systematic study are presented from the authors’ own lab examining how protic and aprotic solvents, as well as solvent polarity, affect adsorption of carboxylic dyes on the titanium dioxide nanoparticle surface and electron injection from the dye to the semiconductor. Adsorption of dye molecules on nanoparticle surfaces is measured through second harmonic light scattering and electron injection through ultrafast transient mid-infrared absorption. It is revealed that protic solvents do not allow direct adsorption of the dye onto the semiconductor surface, due to hydrogen bonding with the dye and competitive binding to the semiconductor surface. Aprotic solvents, on the other hand, support solvation of the dye molecules but also facilitate dye adsorption on the semiconductor nanoparticle. Among aprotic solvents, it is found that solvents with higher polarity result in larger adsorption free energy for the dye and faster electron injection. Overall, these studies reveal that aprotic solvents with high solvent polarity (such as acetonitrile) yield more efficient solar cell devices.  相似文献   

11.
Molecular rotors are a group of environment-sensitive fluorescent probes whose quantum yield depends on the ability to form twisted intramolecular charge-transfer (TICT) states. TICT formation is dominantly governed by the solvent’s microviscosity, but polarity and the ability of the solvent to form hydrogen bonds play an additional role. The relationship between quantum yield ϕ F and viscosity η is widely accepted as a power-law, fF = C ·hx\phi_F = C \cdot \eta ^x. In this study, we isolated the direct influence of the temperature on the TICT formation rate by examining several molecular rotors in protic and aprotic solvents over a range of temperatures. Each solvent’s viscosity was determined as a function of temperature and used in the above power-law to determine how the proportionality constant C varies with temperature. We found that the power-law relationship fully explains the variations of the measured steady-state intensity by temperature-induced variations of the solvent viscosity, and C can be assumed to be temperature-independent. The exponent x, however, was found to be significantly higher in aprotic solvents than in protic solvents. We conclude that the ability of the solvent to form hydrogen bonds has a major influence on the relationship between viscosity and quantum yield. To use molecular rotors for the quantitative determination of viscosity or microviscosity, the exponent x needs to be determined for each dye-solvent combination.  相似文献   

12.
We investigated three amino derivatives of ortho-aminobenzoic or anthranilic acid (o-Abz): a) 2-Amino-benzamide (AbzNH2); b) 2-Amino-N-methyl-benzamide (AbzNHCH3) and c) 2-Amino-N-N′-dimethyl-bezamide (AbzNH(CH3)2), see Scheme 1. We describe the results of ab-initio calculations on the structural characteristics of the compounds and experimental studies about solvent effects in their absorption and steady-state and time-resolved emission properties. Ab-initio calculations showed higher stability for the rotameric conformation in which the oxygen of carbonyl is near to the nitrogen of ortho-amino group. The derivatives present decrease in the delocalization of π electron, and absorption bands are blue shifted compared to the parent compound absorption, the extent of the effect increasing from to Abz-NH2 to Abz-NHCH3 Abz-NH(CH3)2. Measurements performed in several solvents have shown that the the dependence of Stokes shift of the derivatives with the orientational polarizability follows the Onsager-Lippert model for general effects of solvent. However deviation occurred in solvents with properties of Bronsted acids, or electron acceptor characteristics, so that hydrogen bonds formed with protic solvents predominates over intramolecular hydrogen bond. In most solvents the fluorescence decay of AbzNH2 and AbzNHCH3 was fitted to a single exponential with lifetimes around 7.0 ns and no correlation with polarity of the solvent was observed. The fluorescence decay of AbzN(CH3)2 showed lifetimes around 2.0 ns, consistent with low quantum yield of the compound. The spectroscopic properties of the monoamino derivative AbzNHCH3 are representative of the properties presented by Abz labelled peptides and fatty acids previously studied.  相似文献   

13.
High-precision nitrogen NMR shieldings, bulk susceptibility corrected, are reported for dimethyl-N-nitrosamine (I) and diethyl-N-nitrosamine (II) in a variety of solvents which represent a wide range of solvent properties from the point of view of polarity as well as hydrogen bond donor and acceptor strength. The observed range of solvent-induced nitrogen shielding variations of (I) and (II) is significant for the amino-type nitrogens, up to about 16 ppm, and originates essentially from the deshielding effect of the increasing polarity of solvent. On the other side, the nitroso nitrogen shieldings reveal an even stronger response to solvent effects, within about 20 ppm, but in this case the increasing polarity and hydrogen bond donor strength of solvent produce enhanced shielding. DFT quantum-mechanical calculations using the GIAO/B3PW91/6-311++G** approach and geometry optimizations employing the same basis set and hybrid density functionals show an excellent correlation with the experimental data on C-, N-, and O-nitroso moieties and reproduce not only major changes but also most of the subtle variations in the experimental nitrogen shieldings of the nitroso systems as a whole. A combination of the calculations involving the corresponding N and O-protonated species and the trends observed in the solvent-induced nitrogen shielding variations shows clearly that the prime acceptor site for hydrogen bonding is the nitroso oxygen atom.  相似文献   

14.
The influence of structural flexibility on dipole moments, energy-level locations, and charge distributions in prodan and laurdan molecules was studied. A quantum-chemical calculation of isolated prodan and laurdan molecules in the fluorescent state geometry was conducted. Rate constants for radiative and non-radiative processes and fluorescence quantum yields for these probe molecules were calculated. Interaction centers of prodan and laurdan with a proton-donor solvent were estimated quantitatively. The possibility of using fluorescent probes for estimating the polarity of proton-donor and proton-acceptor solvents was shown. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 3, pp. 334–341, May–June, 2009.  相似文献   

15.
The effect of positional substitution of amino group on the ground and excited state dipole moments of quinoline ring has been investigated using solvatochromic shift methods. The excited state dipole moments of 5aminoquinoline (5AQ) and 3aminoquinoline (3AQ) have been estimated from the spectral data in different non-polar, polar aprotic and polar protic solvents using Bakhshiev and Kawski-Chamma-Viallet equations. It has been observed that both grounds as well as excited state dipole moments for 5AQ are higher than those for 3AQ by approximately a factor of two. Higher values of the excited state dipole moments for both 3AQ and 5AQ as compared to corresponding ground state values have been attributed to intramolecular charge transfer processes. The role of specific solute-solvent interaction on excited state dipole moment in addition to the general solvent effects has been discussed.  相似文献   

16.
通过考察2-羟基-1-萘甲醛半碳酰腙(HNLSC)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了HNLSC分子在不同溶剂及酸、碱条件下的不同构型,证实了HNLSC具有典型的ESIPT特性。在非极性溶剂中分子主要以分子内氢键的闭式构型存在,这种闭式构型使分子具有ESIPT特性,在环己烷溶剂和高酸度极性溶剂中分子均表现出~415nm的正常荧光和~435nm处的反常ESIPT荧光。在极性质子溶剂中,因溶质和溶剂之间形成了分子间的氢键以及进一步去质子化,HNLSC形成了基态的溶剂化开式构型和离子构型,在吸收光谱中表现出~395nm的离子构型特征吸收。开式构型和离子构型阻断了分子内质子转移途径,因而在荧光光谱中仅表现出一个特征峰。实验进一步通过三乙胺和稀硫酸调节溶液体系的极性和酸度环境,证明在不同溶剂极性和酸度环境下,HNLSC分子不仅存在萘环上羟基变化引起的多种互变异构体间的转化平衡,同时存在—CHN—NH—CO—NH2结构域的烯醇式和酮式结构的相互转化。  相似文献   

17.
3-Hydroxyquinolones (3HQs) are a new class of water soluble dual fluorescence probes that can monitor both polarity and basicity (H-bond accepting ability) parameters. Both parameters play an important role in proteins and lipid membranes. Nevertheless, no method exists actually to measure the basicity parameter separately from the polarity. To achieve this aim, we synthesized 2-benzofuryl-3-hydroxy-4(1H)-quinolone (3HQ-Bf) and characterized its photophysical properties by UV, steady-state and time-resolved fluorescence spectroscopy. Due to its extended conjugation and totally planar conformation, 3HQ-Bf is characterized by a high fluorescence quantum yield. In solution, this dye shows an excited state intramolecular proton transfer (ESIPT) reaction resulting in two tautomer bands in the emission spectra. The ESIPT reaction can be considered as irreversible and is governed by rate constants from 0.6 to 8 × 109 s−1, depending on the solvent. The analysis of the spectral properties of 3HQ-Bf in a series of organic solvents revealed a marginal sensitivity to the solvent polarity, but an exquisite sensitivity to solvent basicity, as shown by the linear dependence of the logarithm of the emission bands intensity ratio, log(IN*/IT*), as well as the absorption or emission maxima wavenumbers as a function of the solvent basicity parameter. This probe may find useful applications through coupling to a protein ligand, for characterizing the H-bond acceptor ability at the ligand binding site as well as for studying the basicity changes of lipid membranes during their chemo- and thermotropic conversions.  相似文献   

18.
何迪洁  倪忠强 《发光学报》1985,6(3):222-229
本文对八种若丹明6G溶液的荧光量子效率进行了测量,并着重讨论了染料若丹明6G溶液体系的量子效率的溶剂效应.在研究中发现:若丹明6G溶渡的荧光量子效率与溶液极性(ε-1)/(2ε+1)之间存在线性关系,体系的荧光量子效率随溶剂极性的增加而下降.由于染料分子与成氢键溶剂作用愈强,能量散逸愈快将是导致这一结果的主要原因.这一规律也适用于ANS染料溶液体系中.  相似文献   

19.
Quinoxalin-2(1H)-one and its derived 3-Benzylquinoxalin-2(1H)-one were synthesized and characterized by UV–visible spectroscopy. The changes displayed by the photophysical properties of these molecules in different solvents can be explained in terms of a sum of dielectric polarity and hydrogen bonding effects taking part in the stabilisation of the structure. 3-Benzylquinoxalin-2(1H)-one exhibits two fluorescence emission bands (F a and F n) in very polar solvents and one band (F n) in low polar solvents. These bands are assigned on the basis of the absorption and emission solvent effect. The abnormal fluorescence (F a) observed in very polar solvents is attributed to an intermolecular interaction between solute and solvent molecules in the excited state (exciplex formation).  相似文献   

20.
The absorption and fluorescence spectra of imipramine and carbamazepine have been recorded in solvents of different polarity and β-cyclodextrin (β-CD). The inclusion complexes for both drugs are investigated by UV-visible, fluorimetry and DFT. Solvents study shows isotropic polarizability structure is present in imipramine while the amide group inhibits the above structure in carbamazepine. The band width half a maximum of carbamazepine decreased in polar solvents suggest that different species present in non-polar solvents and among that one of this species is affected in protic solvents. Both drugs form two different 1:2 inclusion complexes with β-CD. The structured longer wavelength emission in β-CD solution suggests viscosity plays major roles in the inclusion complex. This study also confirms van der Waals forces and hydrophobic interactions are the driving forces in imipramine and hydrogen bonding interactions play major roles in carbamazepine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号