首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A fast and economical route based on an efficient microwave-induced solid-state process has been developed to synthesize metastable TiO2(B) nanobelts with widths of 30–100 nm and lengths up to a few micrometers on a large scale. This new method reduces the synthesis time for the preparation of TiO2(B) nanobelts to less than half an hour, allowing the screening of a wide range of reaction conditions for optimizing and scaling up the production and facilitating the formation of metastable phase TiO2(B). The as-formed TiO2(B) nanobelts exhibit enhanced lithium-storage performances, compared with the TiO2(B) product obtained by the conventional heating. This study provides a new way for large-scale industrial production of high-quality metastable TiO2(B) nanostructures. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.  相似文献   

2.
Cr-doped layered oxides Li[Li0.2Ni0.2???x Mn0.6???x Cr2x ]O2 (x?=?0, 0.02, 0.04, 0.06) were synthesized by co-precipitation and high-temperature solid-state reaction. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TRTEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). XRD patterns and HRTEM results indicate that the pristine and Cr-doped Li1.2Ni0.2Mn0.6O2 show the layered phase. The Li1.2Ni0.16Mn0.56Cr0.08O2 shows the best electrochemical properties. The first discharge specific capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mA h g?1 at 0.1 C, while that of Li1.2Ni0.2Mn0.6O2 is 230.4 mA h g?1. The capacity retaining ratio of Li1.2Ni0.16Mn0.56Cr0.08O2 is 97.9% compared with 93.9% for Li1.2Ni0.2Mn0.6O2 after 80 cycles at 0.2 C. The discharge capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mA h g?1 at 5.0 C, while that of the pristine Li1.2Ni0.2Mn0.6O2 is about 94.5 mA h g?1. XPS results show that the content of Mn3+ in the Li1.2Ni0.2Mn0.6O2 can be restrained after Cr doping during the cycling, which results in restraining formation of spinel-like structure and better midpoint voltages. The lithium-ion diffusion coefficient and electronic conductivity of Li1.2Ni0.2Mn0.6O2 are enhanced after Cr doping, which is responsible for the improved rate performance of Li1.2Ni0.16Mn0.56Cr0.08O2.  相似文献   

3.
In this article, a hydrothermal method was developed to synthesize Co3O4 nanocubes using hydrogen peroxide (H2O2) as oxidant, Co(NO3)2·6H2O as a cobalt source. The products are characterized in detail by multiform techniques including X-ray diffraction (XRD), energy dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the obtained products are Co3O4 nanocubes with size ranging between 20 and 40 nm. The effects of the hydrogen peroxide concentration on the size of the products have been studied. The electrocatalytic activities of H2O2 reduction on Co3O4 nanocubes in phosphate buffer were also evaluated.  相似文献   

4.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

5.
Layered lithium-enriched nickel manganese oxides Li1.2Ni0.2Mn0.6O2 have been synthesized and coated by fast ionic conductor Li3VO4 with varying amounts (1, 3, and 5 wt%) in this paper. The effect of Li3VO4 on the physical and electrochemical properties of Li1.2Ni0.2Mn0.6O2 has been discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), discharge, cyclic performance, rate capability, and electrochemical impedance spectroscopy (EIS). The discharge capacity and coulomb efficiency of Li1.2Ni0.2Mn0.6O2 in the first cycle have been improved after Li3VO4 coating. And, the 3 wt% Li3VO4-coated Li1.2Ni0.2Mn0.6O2 shows the best discharge capacity (246.8 mAh g?1), capacity retention (97.3 % for 50 cycles), and rate capability (90.4 mAh g?1 at 10 C). Electrochemical impedance spectroscopy (EIS) results show that the R ct of Li1.2Ni0.2Mn0.6O2 electrode decreases after Li3VO4 coating, which is due to high lithium ion diffusion coefficient of Li3VO4, is responsible for superior rate capability.  相似文献   

6.
In this work, we research two series of Mn-substituted bismuth molybdates: Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d. The synthesis of powder samples is performed by the conventional solid state technology. Samples are characterized by X-ray diffraction, scanning electron microscopy, and chemical analysis methods, and it is shown that single phase Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d complex oxides form up to x = 0.8 and y = 0. We use densitometry, grain size measurements and scanning electron microscopy to study the morphology of ceramic pellets and powders. This issue reveals formation of dense ceramic samples with low porosity (≤3%). High-temperature X-ray diffraction is used to define small deviation of unit cell parameters from their linear dependence on temperature. Measurement of electrical conductivity is made using a.c. impedance spectroscopy method. We observe the decrease of electrical conductivity in Bi26-2xMn2xMo10O69-d series depending on dopant concentration.  相似文献   

7.
M RIAZIAN  A BAHARI 《Pramana》2012,78(2):319-331
TiO2 Nano rods can be used as dye-sensitized solar cells, various sensors and photocatalysts. These nanorods are synthesized by a hydrothermal corrosion process in NaOH solution at 200°C using TiO2 powder as the source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti7O13 phases and synthesis of TiO2 nanorods by incorporating SiO2 dopant, using the sol–gel method and alkaline corrosion are reported. The morphologies and crystal structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) study. The obtained results show not only an aggregation structure at high calcination temperatures with spherical particles but also Ti–O–Si bonds having four-fold coordination with oxygen in SiO4 − .  相似文献   

8.
In this work, Li2ZrF6, a lithium salt additive, is reported to improve the interface stability of LiNi0.5Mn1.5O4 (LNMO)/electrolyte interface under high voltage (4.9 V vs Li/Li+). Li2ZrF6 is an effective additive to serve as an in situ surface coating material for high-voltage LNMO half cells. A protective SEI layer is formed on the electrode surface due to the involvement of Li2ZrF6 during the formation of SEI layer. Charge/discharge tests show that 0.15 mol L?1 Li2ZrF6 is the optimal concentration for the LiNi0.5Mn1.5O4 electrode and it can improve the cycling performance and rate property of LNMO/Li half cells. The results obtained by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) demonstrate that Li2ZrF6 can facilitate the formation of a thin, uniform, and stable solid electrolyte interface (SEI) layer. This layer inhibits the oxidation decomposition of the electrolyte and suppresses the dissolution of the cathode materials, resulting in improved electrochemical performances.  相似文献   

9.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   

10.
A facile room-temperature synthesis has been developed to prepare colloidal Mn3O4 and γ-Fe2O3 nanoparticles (5 to 25 nm) by an ultrasonic-assisted method in the absence of any additional nucleation and surfactant. The morphology of the as-prepared samples was observed by transmission electron microscopy. High-resolution transmission electron microscopy observations revealed that the as-synthesized nanoparticles were single crystals. The magnetic properties of the samples were investigated with a superconducting quantum interference device magnetometer. The possible formation process has been proposed.  相似文献   

11.
Manganese oxide (hausmannite) nanowires were prepared by annealing precursor powders at a temperature of 800 °C for 3 h, which were produced in a novel inverse microemulsion (IμE) system. The microstructures of the as-prepared Mn3O4 nanowires were investigated by means of X-ray diffraction, transmission electron microscopy, and Raman spectra. It has been found that the Mn3O4 nanowires were relatively straight and their surfaces were smooth with a typical diameter of 75–150 nm. The formation mechanism of the Mn3O4 nanowires is discussed. Received: 30 May 2002 / Accepted: 7 October 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: wangqun@nju.edu.cn  相似文献   

12.
The Li(Ni0.6Co0.15Mn0.25)1?x (CuTi) x O2 (x = 0.00, 0.01, 0.02, 0.03) cathode materials were synthesized via a hydroxide co-precipitation method followed by a solid-state reaction. The elementary composition, crystal structure features, morphology, and electrochemical performances of the powders were investigated in detail by inductively coupled plasma-atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), respectively. The results of XRD and Rietveld refinements demonstrate that Cu and Ti co-substitution does not destroy the crystal structure, but can decrease cation ordering level and improve structural integrity. Electrochemical results show that Cu and Ti addition also results in an improved rate and cycling performances compared to pristine LiNi0.6Co0.15Mn0.25O2. An increase in rate performance and cycle stability upon copper and titanium co-substitution is related to the better hexagonal structure and enhanced kinetics of the intercalation process. Especially, Li(Ni0.6Co0.15Mn0.25)0.99(CuTi)0.01O2 exhibits the best rate performance and cycle stability among all samples with discharge specific capacity of 178.8 mAh/g and capacity retention of 90.6% after 30 cycles at 0.2C, which are higher than those of other materials.  相似文献   

13.
Mn1.5Co1.5O4 hierarchical microspheres have been successfully synthesized via a solvothermal method and an annealing procedure. Mn1.5Co1.5O4 exhibits advanced cycling performance, and it retains a reversible capacity of 633 mA h g?1 at a current density of 400 mA g?1 with a coulombic efficiency of 99.0% after 220 cycles. Its remarkable performance is attributed to the hierarchical structure assembled with nanorods, which increases the contact area between each nanorod and electrolyte. More significantly, the open space between neighboring nanorods and the pores on the surface of nanorods can improve Li+ ion diffusion rate. Furthermore, the nanorods have rapid one-dimensional Li+ diffusion channels, which not only possess a large specific surface area for high activity but accommodate the volume change during lithiation–delithiation processes. Therefore, Mn1.5Co1.5O4 hierarchical microspheres can act as a promising alternative anode material for lithium-ion battery.  相似文献   

14.
A precursor of TiO2–LiCo1/3Ni1/3Mn1/3O2 was prepared by electrostatic self-assembly method. The final product was obtained by heating the precursor at 400–450 °C for 4–6 h in air. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical tests were used to examine the structural, morphology, elementary valence, and electrochemical characteristics. XRD indicated that the TiO2-coated material can be indexed by α-NaFeO2 layered structure, which belongs to hexagonal-type space group R3m. XPS results confirmed the existence of TiO2 compound on the surface of the coated sample. The SEM image showed that the material had spherically porous morphology with the uniform size about 6 μm. The initial charge–discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 material was 168.8/160.0 mAh/g. After 60 cycles, the discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 sample was 147.0 mAh/g, and the coulombic efficiency was 94.0%. Compared with the uncoated sample, the electrochemical performance of TiO2-coated LiCo1/3Ni1/3Mn1/3O2 was improved.  相似文献   

15.
This paper describes the preparation and characterization of a high-voltage lithium-ion battery based on Sn-decorated reduced graphene oxide and LiNi0.5Mn1.5O4 as the anode and cathode active materials, respectively. The Sn-decorated reduced graphene oxide is prepared using a microwave-assisted hydrothermal synthesis method followed by reduction at high temperature of a mixture of (C6H5)2SnCl2 and graphene oxide. The so-obtained anode material is characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and electron diffraction spectroscopy. The LiNi0.5Mn1.5O4 is a commercially available product. The two materials are used to prepare composite electrodes, and their electrochemical properties are investigated by galvanostatic charge/discharge cycles at various current densities in lithium cells. The electrodes are then used to assemble a high-voltage lithium-ion cell, and the cell is tested to evaluate its performance as a function of discharge rate and cycle number.  相似文献   

16.
Li[Ni1/3Co1/3Mn1/3]O2 and Sn-doped Li[Ni1/3Co1/3Mn1/3]O2 cathode materials for lithium battery are synthesized by a solid-state method. The samples are characterized by X-ray diffraction, scanning electron microscope, electrochemical impedance spectroscopy (EIS), and charge–discharge test. The results show that the Sn-doped Li[Ni1/3Co1/3Mn1/3]O2 has a typical hexagonal α-NaFeO2 structure and strawberry-like shape with uniform particle size. It has also been found that the Sn-doped Li[Ni1/3Co1/3Mn1/3]O2 reveals better electrochemical performances than that without Sn doping. The EIS results suggest that Sn presence decreases the total resistance of Li[Ni1/3Co1/3Mn1/3]O2, which should be related to the improvement on the electrochemical properties.  相似文献   

17.
Al-Mo codoped Li7La3Zr2O12 ceramics with fine grain were prepared by sol-gel method. The influences of Al-Mo codoping on the structure, microstructure, and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy. The cubic phase Li7La3Zr2O12 has been stabilized by partial substitution of Al for Li and Mo for Zr. Li6.6-3yAlyLa3Zr1.8Mo0.2O12 (0?≤?y?≤?0.1) has been sintered at 1040–1060 °C for 3 h. The liquid sintering facilitated its densification. The relative density of the composition with x?=?0.075 was approximately 96.4%. Results indicated that the Al-Mo codoped LLZO synthesized by sol-gel method effectively lowered its sintering temperature, accelerated densification, and improved the ionic conductivity.  相似文献   

18.
Ultra-low dielectric permittivity poly (methyl methacrylate)/Fe3O4 composite fiber membranes have been successfully prepared using electrospinning. The composite membranes were characterized by SEM (scanning electron microscopy), TEM (transmission electron microscopy), FT-IR (Fourier transform infrared), XRD (X-ray diffraction) and a radio frequency (RF) impedance/capacitance material analyzer. The magnetic measurement showed that the composite membranes displayed the super-paramagnetic property. The results showed that the dielectric permittivity of the composite fiber membranes was decreasing with increasing Fe3O4 nanoparticle content.  相似文献   

19.
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.  相似文献   

20.
Well-aligned Co3O4 nanotubes were synthesized within the nanochannels of porous anodic alumina membranes using a single-source chemical vapor deposition method. Scanning electron microscopy and transmission electron microscopy showed that the Co3O4 nanotubes are highly ordered with uniform diameter in the range of 100–300 nm and length up to tens of microns. X-ray diffraction, the Raman spectrum, energy-dispersive spectroscopy and selected-area electron diffraction demonstrated that the nanotubes are composed of pure cubic phase polycrystalline Co3O4. Magnetic measurements using a SQUID magnetometer suggested the presence of a strong antiferromagnetic interaction with Weiss constant θ= -248 K. The real and imaginary parts of the ac susceptibility at f= 10 Hz had a maximum at 4.0 K, and the field dependence of the magnetization at 1.8 K showed a small hysteresis loop with a coercivity of ∼ 98 Oe. PACS 81.07.De; 81.15.Gh; 78.30.-j; 75.75.+a; 61.46.Np  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号