首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider in this article a Cahn-Hilliard model in a bounded domain with non-permeable walls, characterized by dynamic-type boundary conditions. Dynamic boundary conditions for the Cahn-Hilliard system have recently been proposed by physicists in order to account for the interactions with the walls in confined systems and are obtained by writing that the total bulk mass is conserved and that there is a relaxation dynamics on the boundary. However, in the case of non-permeable walls, one should also expect some mass on the boundary. It thus seems more realistic to assume that the total mass, in the bulk and on the boundary, is conserved, which leads to boundary conditions of a different type. For the resulting mathematical model, we prove the existence and uniqueness of weak solutions and study their asymptotic behavior as time goes to infinity.  相似文献   

2.
Molecular dynamics simulations of polymer melts at flat and structured surfaces reveal that, for the former, slow dynamics and increased dynamic heterogeneity for an adsorbed polymer is due to densification of the polymer in a surface layer, while, for the latter, the energy topography of the surface plays the dominant role in determining dynamics of interfacial polymer. The dramatic increase in structural relaxation time for polymer melts at the attractive structured surface is largely the result of dynamic heterogeneity induced by the surface and does not resemble dynamics of a bulk melt approaching T(g).  相似文献   

3.
Intermolecular coupling plays an important role in determining the dynamics and the mobility of polymeric and non-polymeric glass-formers. The breadth of the dispersion is an indicator of the intermolecular coupling strength. The coupling model relates intermolecular coupling through the breadth of the dispersion to the dynamics of bulk glass-formers. When a glass-former is confined in nanometer pores or in thin films and if there is absence of chemical and physical interactions with the wall, intermolecular coupling is reduced, resulting in an increase of mobility. The coupling model is used to account for such changes of relaxation time of 1) ortho-terphenyl and poly(dimethyl siloxane) confined in nanometer pores, 2) polymer thin film confined between two impenetrable walls from Monte Carlo simulation, and 3) polymer film confined by perfectly smooth and purely repulsive potential acting on the repeat units from molecular-dynamics simulation. The model continues to explain the opposite effects observed when there is an increase of intermolecular coupling due to the presence of chemical or physical interaction with the walls.Received: 1 January 2003, Published online: 8 October 2003PACS: 64.70.Pf Glass transitions - 68.60.Bs Mechanical and acoustical properties - 36.20.-r Macromolecules and polymer molecules  相似文献   

4.
Results of large-scale molecular-dynamics simulations of a supercooled polymer film are presented (F. Varnik, J. Baschnagel, K. Binder, J. Phys. IV 10, 239 (2000)). The dynamic and static properties of the system are studied for a wide range of film thicknesses (from 3 to about 55 times the bulk radius of gyration) and temperatures (from the normal liquid state to the supercooled region). The system is confined between two completely smooth and purely repulsive walls. Motivated by the previous results on the enhancement of the local relaxation dynamics due to the confinement (F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002); Phys. Rev. E. 65, 021507 (2002)), we now study the effect of the walls on the dynamics of the Rouse modes. It has been reported from Monte Carlo studies of the Bond Fluctuation Model (BFM) that, contrary to the enhancement of the cage dynamics (exemplified by a faster relaxation of the incoherent scattering function in the film), Rouse modes exhibit a slower relaxation in the confined system (C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001)). However, we do not observe such a discrepancy for our continuum model: At a given temperature, the relaxation of a given Rouse mode is faster in the film than in the bulk in accordance with the acceleration of the dynamics around the cage.Received: 1 January 2003, Published online: 21 October 2003PACS: 61.20.Ja Computer simulation of liquid structure - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 64.70.Pf Glass transitions  相似文献   

5.
We use molecular-dynamics computer simulations to study the relaxation dynamics of a confined simple liquid. Two types of confining walls are considered: A rough wall and a smooth wall. The simulation is set up in such a way that the static properties of the confined system are identical to the ones of the bulk. Nevertheless, we find that upon cooling the relaxation dynamics of the confined systems differ strongly from the one of the bulk. In particular, we find that close to the rough/smooth wall this dynamics is slowed down/accelerated by orders of magnitude. Using these results we are able to extract a dynamical length scale of the system and we show that this length shows an Arrhenius dependence.Received: 1 January 2003, Published online: 14 October 2003PACS: 64.70.Pf Glass transitions - 68.15. + e Liquid thin films - 02.70.Ns Molecular dynamics and particle methods  相似文献   

6.
ABSTRACT

We provide a detailed derivation of the mode-coupling equations for a colloidal liquid confined by two parallel smooth walls. We introduce irreducible memory kernels for the different relaxation channels thereby extending the projection operator technique to colloidal liquids in slit geometry. Investigating both the collective dynamics as well as the tagged-particle motion, we prove that the mode-coupling functional assumes the same form as in the Newtonian case corroborating the universality of the glass-transition singularity with respect to the microscopic dynamics.  相似文献   

7.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

8.
The interior surface of well-defined porous alumina membranes (Anopore) of 20 nm and 200 nm pore diameter, respectively, was coated with polymer layers generated from solution by the solvent evaporation method. Deposits of poly(dimethyl siloxane) (PDMS) with nominal thicknesses ranging from 0.15 to 4.5 nm --corresponding to submonolayer to multilayer films--were investigated, and were compared to poly(butadiene) (PB) as an example for non-wetting polymers. Molecular weights below and above the critical value were studied since the bulk dynamics of such polymers are known to be qualitatively different. First results of NMR relaxation dispersion experiments on these systems are presented, supplemented by transverse relaxation times and double-quantum measurements obtained from high-field NMR. A systematic decrease of relaxation times at low fields with decreasing polymer amount is found for PDMS, but molecules retain a high degree of mobility irrespective of molecular weight. The relaxation dispersion results are supported by T2 data and 1H residual dipolar coupling (RDC) constants, and are discussed in terms of molecular order and reorientational dynamics.  相似文献   

9.
In magnetic resonance imaging with hyperpolarized (HP) noble gases, data is often acquired during prolonged gas delivery from a storage reservoir. However, little is known about the extent to which relaxation within the reservoir will limit the useful acquisition time. For quantitative characterization, 129Xe relaxation was studied in a bag made of polyvinyl fluoride (Tedlar). Particular emphasis was on wall relaxation, as this mechanism is expected to dominate. The HP 129Xe magnetization dynamics in the deflating bag were accurately described by a model assuming dissolution of Xe in the polymer matrix and dipolar relaxation with neighboring nuclear spins. In particular, the wall relaxation rate changed linearly with the surface-to-volume ratio and exhibited a relaxivity of κ=0.392±0.008 cm/h, which is in reasonable agreement with κ=0.331±0.051 cm/h measured in a static Tedlar bag. Estimates for the bulk gas-phase 129Xe relaxation yielded T1bulk=2.55±0.22 h, which is dominated by intrinsic Xe-Xe relaxation, with small additional contributions from magnetic field inhomogeneities and oxygen-induced relaxation. Calculations based on these findings indicate that relaxation may limit HP 129Xe experiments when slow gas delivery rates are employed as, for example, in mouse imaging or vascular infusion experiments.  相似文献   

10.
Mesoscopic media such as porous materials or colloidal pastes develop large specific surface area which strongly influence the dynamics of the embedded fluid. This fluid confinement can be used either to probe the interfacial geometry (frozen porous media) or the particle dynamics (paste and colloidal glass). In the strong adsorption regime, it was recently proposed that the effective surface diffusion on flat surface is anomalous and exhibits long time pathology (Lévy walks). This phenomena is directly related to the time and space properties of loop trajectories appearing in the bulk between a desorption and a readsorption step. The Lévy statistics extends the time domain of the embedded fluid dynamics toward the low frequency regime. An interesting way to probe such a slow interfacial process is to use field cycling NMR relaxometry. In the first part of this paper, we propose a simple theoretical model of NMR dispersion which only involves elementary time steps of the solvent dynamics near an interface (loops, trains, tails in relation with the confining geometry). In the second part, field cycling NMR relaxometry is used to probe the slow solvent dynamics in two type of interfacial systems: (i) a colloidal glass made of thin and flat particles (ii) two fully saturated porous media, the Vycor glass and MCM48 respectively. Experimental results are critically compared to closed-form analytical expressions and numerical simulations.  相似文献   

11.
Langevin dynamics simulations are employed to study the dynamical properties of a flexible polymer in an active bath. The diffusion of the centre of mass and end-to-end distance fluctuation are particularly analysed. We modulate both active force and active particle size to probe the activity-induced facilitation of polymer dynamics. Results indicate diffusivity and chain relaxation time can be well scaled by the effective temperature of the active bath. In addition, diffusion dynamics demonstrates an anomalous superdiffusive behaviour in short time scales, which becomes more prominent with increasing active particle size. Lastly, we extract the effective viscosity experienced by the probed chain, showing a sharp decrease with increment of effective temperature. The attenuation of effective viscosity due to activity might be responsible for the facilitated polymer dynamics.  相似文献   

12.
We present computer simulations of nanoindentation into amorphous polymer films. The bulk polymer is treated through a united atom model in connection with molecular dynamics methods. The dynamics of the indenter is modeled as overdamped, such that the indentation velocity is proportional to the difference between the external force acting onto the tool and the resistance force built up in the polymer film. We concentrate on the initial, kinetic stage of the indentation process and give results for the motion of the indenter, the deformation field of the polymer film, the stress field, and the field of total monomer energy. We propose an effective coefficient as a new measure for the resistivity of a surface against indentation. Its value can be determined in an experiment with constant indentation velocity. In addition, we investigate the free drift behavior when the external driving force has been set to zero and the tool is expelled from the polymer film. For different polymer chain lengths, the tool’s motion is exponential in time and we determine the relaxation scale.  相似文献   

13.
The influence of an external flow on the relaxation dynamics of a single polymer is investigated theoretically and numerically. We show that a pronounced dynamical slowdown occurs in the vicinity of the coil-stretch transition, especially when the dependence on polymer conformation of the drag is accounted for. For the elongational flow, relaxation times are exceedingly larger than the Zimm relaxation time, resulting in the observation of conformation hysteresis. For random smooth flows, hysteresis is not present. Yet, relaxation dynamics is significantly slowed down because of the large variety of accessible polymer configurations. The implications of these results for the modeling of dilute polymer solutions in turbulent flows are addressed.  相似文献   

14.
Polymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluctuations on the polymer translocation dynamics.  相似文献   

15.
It is shown that the confinement of polymer melts in nanopores leads to chain dynamics dramatically different from bulk behavior. This so-called corset effect occurs both above and below the critical molecular mass and induces the dynamic features predicted for reptation. A spinodal demixing technique was employed for the preparation of linear poly(ethylene oxide) (PEO) confined to nanoscopic strands that are in turn embedded in a quasi-solid and impenetrable methacrylate matrix. Both the molecular weight of the PEO and the mean diameter of the strands were varied to a certain degree. The chain dynamics of the PEO in the molten state was examined with the aid of field-gradient NMR diffusometry (time scale, 10(-2)-10(0) s) and field-cycling NMR relaxometry (time scale, 10(-9)-10(-4) s). The dominating mechanism for translational displacements probed in the nanoscopic strands by either technique is shown to be reptation. On the time scale of spin-lattice relaxation time measurements, the frequency dependence signature of reptation (i.e., T1 approximately nu(3/4)) showed up in all samples. A "tube" diameter of only 0.6 nm was concluded to be effective on this time scale even when the strand diameter was larger than the radius of gyration of the PEO random coils. This corset effect is traced back to the lack of the local fluctuation capacity of the free volume in nanoscopic confinements. The confinement dimension is estimated at which the crossover from confined to bulk chain dynamics is expected.  相似文献   

16.
We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic polymers with hydrophobic side groups along the backbone. The results show that the polymer concentration is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different well-separated time scales, indicating two physical mechanisms. We present a model, which explains the observed phenomena and predicts polymer segregation according to local membrane curvature at late stages.  相似文献   

17.
We studied the dynamics of two different types of domain shape relaxation in a stratifying foam film composed of an anionic polymer and cationic surfactant. Those films thin in stepwise fashion: circular domains of lower film thickness are formed, expand and coalesce until they cover the whole film surface. We found that the shape relaxation of coalescing domains is governed only by 2D dissipation, and the measurement of the time scales allows to determine the ratio between the driving force (line tension) and local film viscosity. Further, we analyzed the withdrawal of stripes and modeled it by a moving disc pulled by an external force. Here, 3D dissipation can not be neglected (Stokes paradox) and the equilibrium velocity depends logarithmically on the viscosity of the surrounding 3D air. The evaluation of both kinds of relaxation events yields the orders of magnitude of film viscosity and line tension. For the investigated system we found that the film viscosity is at least 30 times larger than the bulk viscosity, which can be explained by the local molecular ordering and strong interactions with film surfaces.  相似文献   

18.
We discuss in detail a recently proposed hybrid particle-continuum scheme for complex fluids and evaluate it at the example of a confined homopolymer solution in slit geometry. The hybrid scheme treats polymer chains near the impenetrable walls as particles keeping the configuration details, and chains in the bulk region as continuous density fields. Polymers can switch resolutions on the fly, controlled by an inhomogeneous tuning function. By properly choosing the tuning function, the representation of the system can be adjusted to reach an optimal balance between physical accuracy and computational efficiency. The hybrid simulation reproduces the results of a reference particle simulation and is significantly faster (about a factor of 3.5 in our application example).  相似文献   

19.
20.
We show that non-entangled polymers display an elastic-like behaviour at a macroscopic scale (probed at some 0.100 mm thickness) up to at least hundred degrees above the glass transition temperature. This observation, found under non-slippage conditions, both for side-chain liquid crystalline polymers and ordinary polymers, is in contradiction with the typically found flow behaviour of polymer melt. Our measurements were carried out with a conventional rheometer at thicknesses of several tenths millimetres. Thus, we were probing bulk properties. The observed elasticity supposedly implies that even in the melt the chains experience a cohesive effect of macroscopic distances, involving collective motions over time scales longer than the individual relaxation time of an individual polymer chain. The detection of such a solid-like property of molten non-entangled polymers is of considerable importance for a better understanding of the polymer dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号