首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article replies to Spencer et al. (J. Magn. Reson. 149, 251--257, 2001) concerning the degree to which chemical exchange affects partial saturation corrections using saturation factors. Considering the important case of in vivo (31)P NMR, we employ differential analysis to demonstrate a broad range of experimental conditions over which chemical exchange minimally affects saturation factors, and near-optimum signal-to-noise ratio is preserved. The analysis contradicts Spencer et al.'s broad claim that chemical exchange results in a strong dependence of saturation factors upon M(0)'s and T(1) and exchange parameters. For Spencer et al.'s example of a dynamic (31)P NMR experiment in which phosphocreatine varies 20-fold, we show that our strategy of measuring saturation factors at the start and end of the study reduces errors in saturation corrections to 2% for the high-energy phosphates.  相似文献   

2.
In an article in a previous issue of the Journal of Magnetic Resonance, Ouwerkerk and Bottomley (J. Magn. Reson.148, pp. 425–435, 2001) show that even in the presence of chemical exchange, the dependence of saturation factors on repetition time in the one-pulse experiment is approximately monoexponential. They conclude from this fact that the effect of chemical exchange on the use of saturation factors when correcting for partial saturation is negligible. We take issue with this conclusion and demonstrate that because saturation factors in the presence of chemical exchange are strongly dependent upon all of the chemical parameters of the system, that is, upon all T1's and M0's of resonances in the exchange network and upon the reaction rates themselves, it is problematic to apply saturation factor corrections in situations in which any of these parameters may change. The error criterion we establish reflects actual errors in quantitation, rather than departures from monoexponentiality.  相似文献   

3.
The improper ferroelastic phase letovicite (NH4)3H(SO4)2 has been studied by 1H MAS NMR as well as by static 14N NMR experiments in the temperature range of 296–425 K. The 1H MAS NMR resonance from ammonium protons can be well distinguished from that of acidic protons. A third resonance appears just below the phase transition temperature which is due to the acidic protons in the paraelastic phase. The lowering of the second moment M2 for the ammonium protons takes place in the same temperature range as the formation of domain boundaries, while the signals of the acidic protons suffer a line narrowing in the area of Tc. The static 14N NMR spectra confirm the temperature of the motional changes of the ammonium tetrahedra. Two-dimensional 1H NOESY spectra indicate a chemical exchange between ammonium protons and the acidic protons of the paraphase.  相似文献   

4.
To understand the surprising behavior between the variations of the P′–P–P″ angles and the correlated variations of the O′–P–O″ ones, two lithium cyclohexaphosphate compounds Li6P6O18·3H2O and Li6P6O18 are studied by solid state nuclear magnetic resonance (NMR) spectroscopy. The two compounds exhibit the same [P6O18]6− ring anions but with 3m or internal symmetry, respectively. Such symmetries induce local distortions that are exhibited by NMR spectroscopy. One-dimensional (1D) NMR gives information on structural sites of 7Li and 31P ions and the crystallographic non-equivalencies are observed. Nevertheless, in the anhydrous compound, X-ray diffraction and NMR results do not completely agree and some discrepancy exists between the number of sites observed with the first technique and the number of lines exhibited in the NMR spectra either for 7Li or 31P nuclei. This problem is elucidated by using 2D double quantum NMR spectroscopy coupled with theoretical considerations. We find that the 31P chemical shift tensor is dependent on the deviations of the O–P–O angles from those in the regular tetrahedron. Within the same empirical model, we suggest that the surprising behavior between the variations of the P′–P–P″ and the ones of the O′–P–O″ is related to the overall charge on the PO4 group. We also find the positions of the isotropic lines for 7Li essentially depend on the site co-ordination of this nuclei.  相似文献   

5.
Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T(1) that ignores effects of chemical exchange. We evaluated the errors in (31)P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (T(R)) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and gamma-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T(1). The analysis shows that these errors are negligible for the progressive saturation method if the observed T(1) is derived from a three-parameter fit of the data. When T(1) is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T(1)/5 < or = T(R) < or = 2T(1). Errors are also less than 5% for three- and four-site exchange when T(R) > or = T(1)(*)/2, the so-called "intrinsic" T(1)'s of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T(1)'s and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T(1)'s were dependent on metabolite concentrations, errors in saturation corrections for T(R) = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T(1) measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting (31)P MRS data for partial saturation in the presence of chemical exchange. Even in systems where metabolite concentrations change, accurate saturation corrections are possible without much loss in SNR.  相似文献   

6.
M2 is now widely used to characterize the quality of laser radiation. In the paraxial approach the inequality M21 holds, if M2 is defined by the second moments. Nevertheless, in some publications M2<1 is presented, either theoretically or experimentally (Wang et al., Optik 1995;100(1):8; Lu et al., Optik 1995;100(2):91; Wang et al., Optics and Laser Technology 1999;31:151). In particular, it is stated that for a superposition of axially shifted Gaussian spherical beams, M2 can become smaller than one (Wang et al., Optics and Laser Technology 1999;31:151). These problems with M2 are briefly summarized.  相似文献   

7.
The application of multiple quantum filtered (MQF) NMR to the identification and characterization of the binding of ligands containing quadrupolar nuclei to proteins is demonstrated. Using relaxation times measured by MQF NMR multiple binding of boric acid and borate ion to ferri and ferrocytochrome c was detected. Borate ion was found to have two different binding sites. One of them was in slow exchange, kdiss = 20 ± 3 s−1 at 5°C and D2O solution, in agreement with previous findings by 1H NMR (G. Taler et al., 1998, Inorg. Chim. Acta 273, 388–392). The triple quantum relaxation of the borate in this site was found to be governed by dipolar interaction corresponding to an average B–H distance of 2.06 ± 0.07 Å. Other, fast exchanging sites for borate and boric acid could be detected only by MQF NMR. The binding equilibrium constants at these sites at pH 9.7 were found to be 1800 ± 200 M−1 and 2.6 ± 1.5 M−1 for the borate ion and boric acid, respectively. Thus, detection of binding by MQF NMR proved to be sensitive to fast exchanging ligands as well as to very weak binding that could not be detected using conventional methods.  相似文献   

8.
Geometric optimization and gauge including atomic orbital (GIAO). 1H and 13C NMR chemical shift calculations with Hartree–Fock (HF) method and density functional method (B3LYP), using the 6‐31G(d) and 6‐31+G(d) basis sets, are proposed as a tool to be applied in the structural characterization of ethene‐1,1,2,2‐tetrayltetramethylene tetrathiocyanate, thus providing useful support in the interpretation of experimental NMR data. Parameters related to linear correlation plot of computed versus experimental 13C NMR chemical shifts in DMSO‐d6 are provided.  相似文献   

9.
The 31P magnetization transfer effects among nuclear magnetic resonances (NMRs) of phosphocreatine (PCr), γ-adenosine-5'-triphosphate (γ-ATP) and inorganic phosphate (Pi) have been attributed to the chemical exchange reactions among PCr, ATP and Pi catalyzed by creatine kinase (CK) and ATPase enzymes and, therefore, are commonly applied in situ to measure chemical exchange fluxes involving two chemically coupled CK and ATPase reactions (i.e., PCr↔ATP↔Pi) by selectively saturating γ-ATP resonance. Besides the expected reductions in the Pi and PCr NMR signals upon saturating γ-ATP resonance, one particularly interesting phenomenon showing decreases in α-ATP and β-ATP signals was also observed. The underlying mechanism was investigated and identified via saturating NMR of β-ATP in the present study. The unique relayed magnetization transfer effects through spin diffusion were observed in the rat brain using in vivo 31P magnetic resonance spectroscopy.  相似文献   

10.
Unexpectedly large ‘Heavy Atom on Light Atom’ (HALA) effects have been found in 13C NMR (Nuclear Magnetic Resonance) chemical shifts of β- and γ-carbons of seleno- and telluroketones established by means of the high-accuracy calculations of 13C NMR chemical shifts in three representative real-life compounds, 2,2,5,5-tetramethyl-3-cyclopentene-1-selone, selenofenchone and 1,1,3,3-tetramethyl-1,3-dihydro-2H-indene-2-tellurone. The proposed computational scheme consists of the combination of accurately correlated coupled-cluster singles and doubles model approach for the non-relativistic calculations of shielding constants taking into account the solvent, vibrational and relativistic corrections, the latter obtained within the 4-component fully relativistic gauge-including atomic orbitals KT2 approach resulting in a very good agreement of the performed calculations with the experiment. The stereochemical dependence of the ‘long-range’ γ-HALA effect on the dihedral angle has been established in the model seleno- and telluroketones providing the largest shielding effect in the orthogonal orientation of the X=Cα–Cβ–Cγ (X=Se, Te) moiety.  相似文献   

11.
The interaction of xenon with different proteins in aqueous solution is investigated by 129Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia “Frontiers of NMR in Molecular Biology VI”, Jan. 9–15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 “Optical Polarization and Xenon NMR of Materials”, June 28–30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

12.
Recent developments in the direct observation of J couplings across hydrogen bonds in proteins and nucleic acids provide additional information for structure and function studies of these molecules by NMR spectroscopy. A JNN-correlated [15N, 1H] TROSY experiment proposed by Pervushin et al. (Proc. Natl. Acad. Sci. USA 95, 14147–14151, 1998) can be applied to measure hJHN in smaller nucleic acids in an E.COSY manner. However, it cannot be effectively applied to large nucleic acids, such as tRNATrp, since one of the peaks corresponding to a fast relaxing component will be too weak to be observed in the spectra of large molecules. In this Communication, we proposed a modified JNN-correlated [15N, 1H] TROSY experiment which enables direct measurement of hJHN in large nucleic acids.  相似文献   

13.
Localized 1H NMR spectroscopy using the 90°−t1−180°−t1+t2−180°−t2−Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t1 and t2. The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t1=t2) at an echo time of 2/J (290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX3 spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3, …, we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.  相似文献   

14.
Five vanadium complexes as models for biological systems were investigated using 51V-MAS–NMR spectroscopy. All spectra show an uncommon line shape, which can be attributed to a shorter relaxation time of the satellite transition in contrast to the central one. A method for the reliable analysis of such kind of spectra is presented for the first time and the most important NMR parameters of the investigated complexes (quadrupolar coupling constant CQ, asymmetry of the EFG tensor ηQ, isotropic chemical shift δiso, chemical shift anisotropy δσ and asymmetry of the CSA tensor ησ) are presented. These results are of particular importance with respect to the analysis of the 51V-MAS–NMR spectra of vanadium moieties in biological matrices such as vanadium chloroperoxidase, which show hitherto unexplained low intensity of the satellite sideband pattern.  相似文献   

15.
《光谱学快报》2013,46(5-6):419-427
The differences in the backbone conformation between O‐thymidine‐3′‐(1) and 5′‐yl O‐alkyl N‐phosphoryl serine methyl esters (2) have been investigated by solution 13C NMR spectroscopy. The stereo‐sensitive vicinal 31P–13C coupling constants were measured and used in the conformational analysis for the P–O5′–C5′, P–O3′–C3′, and P–N–Cα bonds. Three‐dimensional structural characteristics of dephosphorylation reactions of Compounds are also discussed.  相似文献   

16.
The temperature and concentration dependence of 1H NMR chemical shifts of pentafluoroaniline and aniline in acetone (Ac), dimethylsulphoxide (DMSO) and hexamethylphosphortriamide (HMPA) indicate that the effect of hydrogen bond formation, δ = δobs - δA' is similar for both anilines. The analysis of 1H NMR spectra showed, that proton exchange of t-butyl alcohol (tBA) and 2,6-di-t-butylphenol (DTBPh) with pentafluoroaniline is slower than that with aniline.  相似文献   

17.
It is pointed out that the only possible artifact, free opticalNMR (ONMR) shift of up to 0.1Hz reported by Warrenet al. [1] is the same precisely, 0.1Hz, as that predicted byB 3 theory. However, the great majority of the data by Warrenet al. are almost completely artifactual and cannot be used to discriminate between differentONMR mechanisms with any objectivity. Some references toB 3 theory andrecent ONMR data uncited by Warrenet al. are pointed out, data which show that the Warren group–s failure to see very well known [2,3] polarization-dependent effects of irradiation inNMR is a major design failure, not one of theory.  相似文献   

18.
Abstract

Three new bands of the B 2Σ+X 2Σ+ system of 12C17O+ have been investigated using conventional spectroscopic techniques. The spectra were observed in a graphite hollow‐cathode lamp by discharging molecular oxygen (enriched in about 45% of the 17O2 isotope) under 1.0 Torr pressure. The rotational analysis of the 2–4, 2–5, and 2–6 bands was performed with the effective Hamiltonian of Brown (Brown et al., J. Mol. Spectrosc. 1979; 74: 294–318). Molecular constants were derived from a merge calculation, including both the current wavenumbers and the spectroscopic data published by the authors previously. The principal equilibrium constants for the ground state of 12C17O+ are ωe=2185.9658(84), ωe x e = 14.7674(11), B e=1.927001(38), αe=1.8236(22)×10?2, γe=?0.331(28)×10?4, D e=6.041(12)×10?6, βe=0.100(31)×10?7 cm?1, and the equilibrium constants for the excited state are σe=45876.499(15), ωe=1712.201(12), ωe x e=27.3528(39), B e=1.754109(35), αe=2.8706(57)×10?2, γe = ?1.15(19)×10?4, D e=7.491(20)×10?6, βe=2.13(12)×10?7, γe = 2.0953(97)×10?2, and αγe=?9.46(59)×10?4 cm?1, respectively. Rydberg–Klein–Rees potential energy curves were constructed for the B 2Σ+ and X 2Σ+ states of this molecule, and Franck–Condon factors were calculated for the vibrational bands of the BX system.  相似文献   

19.
In the present study, structural properties of Mono-(2-Pyridyl) Hydrazone were studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase) was recorded. The vibrational frequencies in the ground state were calculated by using density functional method (B3LYP) with 6-31G* and 6-311G** as basis sets. The spectral studies revealed that the title compound exists in Keto form. Spectral techniques that we employed include 1H and 13C NMR, electronic, thermal techniques. Correlation between experimental chemical shifts and GIAO/B3LYP/6-311G**-calculated isotropic shielding constants, δexp = a + bσcalc, are reported. Good linear regressions between experimental and theoretical results for 1H and 13C were obtained.  相似文献   

20.
We compare 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra from the two modifications of silicon nitride, α-Si3N4 and β-Si3N4, with that of a fully (29Si, 15N)-enriched sample 29Si315N4, as well as 15N NMR spectra of Si315N4 (having 29Si at natural abundance) and 29Si315N4. We show that the 15N NMR peak-widths from the latter are dominated by J(29Si–15N) through-bond interactions, leading to significantly broader NMR signals compared to those of Si315N4. By fitting calculated 29Si NMR spectra to experimental ones, we obtained an estimated coupling constant J(29Si–15N) of 20 Hz. We provide 29Si spin-lattice (T1) relaxation data for the 29Si315N4 sample and chemical shift anisotropy results for the 29Si site of β-Si3N4. Various factors potentially contributing to the 29Si and 15N NMR peak-widths of the various silicon nitride specimens are discussed. We also provide powder X-ray diffraction (XRD) and mass spectrometry data of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号