首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present paper, we have proposed to exploit an analysis of a self-consistent, steady state, theoretical model, which explains the propagation of cosh-Gaussian laser beams in a plasma. The nonlinearity we have considered is of relativistic type. Using the expression for the dielectric function, we have setup the differential equation for beam-width parameter using the WKB and paraxial approximations. The effect of decentred parameter of the beam on the critical curve and the dependence of the beam-width on the distance of propagation have been specifically considered. The results have been presented in the form of graphs and discussed.  相似文献   

3.
Resonant second harmonic generation by a Gaussian laser beam in a rippled density plasma is studied using the moment theory approach. The nonlinearity arises through the relativistic mass effect and ponderomotive forces. The laser beam creates a plasma channel and gives rise to electron density perturbation at the laser frequency. The density perturbation beats with electron quiver velocity to produce second harmonics. The ripple provides phase matching and makes the process a resonant one. The second harmonic power efficiency is increased effectively with density ripple. Self-focusing causes enhancement in the efficiency of harmonic generation.  相似文献   

4.
Using a direct variational technique involving elliptic Gaussian laser beam trial function, the combined effect of non-linearity and diffraction on wave propagation of optical beam in a homogeneous bulk Kerr-medium is presented. Particular emphasis is put on the variation of beam width and longitudinal phase delay with the distance of propagation. It is observed that no stationary self-trapping is possible. The regularized phase is also seen to be always negative.  相似文献   

5.
6.
Ravinder Kaur  Ranju Mahajan 《Optik》2011,122(5):375-380
Laboratory as well as PIC simulation experiments reveal strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. Variational approach is used to solve this problem and a Lagrangian for the problem is set up. Assuming a trial Gaussian profile, authors solve the reduced Lagrangian problem for beam width and curvature. Two scale lengths for inhomogenity along the direction of propagation, one for nonlinearity and other for diffraction management are introduced. Self-focusing, self-modulation as well as self-trapping of the laser-electron-beam plasma system is studied under variety of parameters.  相似文献   

7.
RK Khanna  K Baheti 《Pramana》2001,56(6):755-766
In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.  相似文献   

8.
9.
In the present paper, self-focusing phenomenon occurring as a result of non-linear interaction of intense laser beam with thermal conduction-loss predominant plasmas is studied by following both approaches viz. paraxial theory approach and moment theory approach. Non-linear differential equations for the beam width parameters of laser beam have been set up and solved numerically in both cases to study the variation of beam width parameters with normalized distance of propagation. Effects of laser intensity as well as plasma density on the beam width parameters have also been analyzed. It is observed from the analysis that in case of moment theory approach, strong self-focusing of laser beam is observed as compared to paraxial theory approach.  相似文献   

10.
11.
Xiongping Xia  Bin Xu 《Optik》2013,124(24):6647-6650
Nonlinear structure of Gaussian laser beam in axial non-uniform underdense collisional plasma is investigated. Due to the combination effect of nonlinear ohmic heating and non-uniform of plasma, and which it modifies electrons temperature and density distribution. On the one hand, due to the effect of the nonlinear ohmic heating, electron temperature and electron density oscillations become highly peaked. On the other hand, due to add the influence of non-uniform of plasma, lead to the departure from sinusoidal shape of electrons temperature, electron density and electromagnetic fields distributions. With the increase of laser intensity, these nonlinear variations become more and more obvious, and their oscillations wavelength decrease.  相似文献   

12.
Off-axial contribution of beam self-focusing in plasma with density ripple is investigated. Apply paraxial ray theory and Wentzel–Krammers–Brillouin approximation, the results shown that, in interaction of laser and plasma with density ripple, beam self-focusing presents some interesting diverse features when off-axial contribution is obvious. In the paper, we find, on the one hand, density ripple can minimize the defocusing and beam still retains a localized profile with an oscillatory self-focusing and defocusing, on the other hand, with the increase of off-axial contribution, laser beams presents four various self-focusing features, which laser beam intensity profile splits into three-splitted with central axial convex profile, three-splitted with equal amplitude profile, three-splitted with central axial concave profile and two-splitted intensity profile.  相似文献   

13.
A gaussian laser beam reflected from a thermocapillary liquid surface self-focuses at a distance L from the sample surface at a time-instant ts after the beginning of the irradiation. The theoretical relation ts(L) is calculated as a function of the liquid physical properties and the laser power.  相似文献   

14.
We describe the results of a numerical code which models the relativistic selffocussing of high-intensity laser beams in plasmas by the nonlinear relativistic dependence of the optical constants on laser intensity. The plasma dynamics of 1013 W Nd glass lasers of 30 m initial beam diameter in nearly cut-off density plasmas is followed for a few picoseconds interaction time and 25 m depth into the plasma. Rapid relativistic selffocussing down to a beam diameter of one micron in a distance of the order of the original beam diameter is observed, as well as the production of GeV ions moving against the laser light.  相似文献   

15.
This article investigates nonlinear self-focusing of an intense right hand circularly polarized Gaussian profile laser pulse in a weakly relativistic and ponderomotive regime inside a collisionless and unmagnetized warm quantum plasma. The nonlinear propagation equation for laser pulse in plasma has been derived. Then, the evolution differential equation for laser spot-size was obtained with considering the parabolic equation approach under the Wentzel-Kramers-Brillouin and paraxial ray approximations. This differential equation was solved numerically by fourth-order Runge-Kutta method. It is shown that our solution confirms the results of the self-focusing of the laser pulse in a weakly relativistic ponderomotive regime in cold quantum plasma in extreme conditions. Numerical results indicate that self-focusing of the laser pulse in the presence of relativistic and ponderomotive nonlinearity inside warm quantum plasma is improved in comparison with relativistic and ponderomotive cold quantum plasma.  相似文献   

16.
We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing.  相似文献   

17.
The second-harmonic generation of an intense self-guided right circularly polarized laser beam in a magnetized plasma is investigated. The laser imparts oscillatory velocity to electrons and exerts a radial ponderomotive force on them to create a depleted density channel. The critical power for self-focusing shows huge reduction as electron cyclotron frequency approaches the laser frequency (/spl omega//sub c/ /spl rarr/ /spl omega/). In the presence of the self-created radial density gradient, the laser drives a density perturbation at the fundamental frequency. The density perturbation beats with the oscillatory velocity to produce a second harmonic current density, driving second harmonic radiation copropagating with the laser. The second harmonic, however, is azimuthally asymmetric with /spl theta/-variation as exp(i/spl theta/). Its amplitude shows resonant enhancement as /spl omega//sub c/ /spl rarr/ /spl omega/.  相似文献   

18.
This paper presents an investigation of self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Raman scattering process. The pump beam interacts with a pre-excited electron plasma wave thereby generating a back-scattered wave. On account of Gaussian intensity distribution of laser beam, the time independent component of the ponderomotive force along a direction perpendicular to the beam propagation becomes finite, which modifies the background plasma density profile in a direction transverse to pump beam axis. This modification in density affects the incident laser beam, electron plasma wave and back-scattered beam. We have set up the non-linear differential equations for the beam width parameters of the main beam, electron plasma wave, back-scattered wave and SRS-reflectivity by taking full non-linear part of the dielectric constant of collisionless plasma with the help of moment theory approach. It is observed from the analysis that focusing of waves greatly enhances the SRS reflectivity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号