首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

A fluorescence method was used for determination of marked chain ends in polystyrene samples prepared by 4‐substituted TEMPO type nitroxide‐mediated living free radical polymerization of styrene. 2,2,6,6‐Tetramethyl‐1‐(1‐phenylethoxy)‐piperidin‐4‐yl‐4‐pyren‐1‐ylbutanoate (PYNOR) was prepared and used as an unimolecular initiator bearing pyrene as a fluorescence mark on mediating nitroxide fragment. The bulk polymerization of styrene at 120°C, in the presence of new unimolecular initiator, was a typical nitroxide mediated living radical polymerization. For comparison, two different molar ratios of initiator and monomer (1∶400 and 1∶1000 initiator ‐ monomer [I:M]) were used for polymerization. When I:M=1∶400, the obtained polydispersity was 1.12 and maximum molecular weight 27,000 g/mol was obtained at 62% conversion. For ratio 1∶1000, slightly higher polydispersity was obtained ?1.26 and the molecular weight was 53,000 g/mol at 70% conversion. The content of the polystyrene chains bearing mediating nitroxide fragment was determined by fluorescence spectroscopy. The intensity of pyrene fluorescence decreased as the molar mass, and the conversion increased as well. The extent of the incorporation of chromophore at propagating chain end or “livingness” of polymerization decreased despite the fact that the polydispersity did not change. The extent of side reaction leading to broadening of polydispersity is suppressed due to the high viscosity of the system at higher conversion. A low extent of “livingness” will have a very negative effect on possible preparation of block copolymers.  相似文献   

2.
Aerogel/polystyrene nanocomposites with mixed free and aerogel-attached polystyrene chains were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. 3-methacryloxypropyldimethylchlorosilane containing a double bond, which could be incorporated into polystyrene chains by a “grafting through” approach, was used as an aerogel modifier. Kinetics of RAFT polymerization of styrene in the presence of modified silica aerogel was studied by monitoring conversion and molar mass values. To further study, attached polymers were detached and their molecular characteristics were compared to free chains. According to results, the presence of silica aerogel particles has a sensible influence on polymerization kinetic and more aerogels result in decreased polymerization rate and conversion. The dispersity (Ð) of polymer chains increased by the addition of silica aerogel. In the case of aerogel-attached polystyrene chains, number-averaged molar mass values were slightly lower than that of free chains. Also, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to observe the effect of loading on thermal properties of synthesized nanocomposites.  相似文献   

3.
Nitroxide‐mediated controlled/living free‐radical polymerization of methyl methacrylate initiated by the SG1‐based alkoxyamine BlocBuilder was successfully performed in bulk at 80–99 °C with the help of a very small amount of acrylonitrile (AN, 2.2–8.8 mol %) as a comonomer. Well‐defined PMMA‐rich P(MMA‐co‐AN) copolymers were prepared with the number‐average molar mass, Mn, in the 6.1–32 kg mol?1 range and polydispersity indexes as low as 1.24. Incorporation of AN in the copolymers was demonstrated by 1H and 13C NMR spectroscopy, and its effect on the chain thermal properties was evaluated by DSC and TGA analyses. Investigation of chain‐end functionalization by an alkoxyamine group was performed by means of 31P NMR spectroscopy and chain extensions from a P(MMA‐co‐AN)‐SG1 macroinitiator. It demonstrated the very high proportion of SG1‐terminated polymer chains, which opened the door to block copolymer synthesis with a high quality of control. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 34–47, 2010  相似文献   

4.
Manipulation of surface properties of wafer is im- portant in technologies of biotechnology and advanced microelectronics[1,2]. A number of methods have been developed to modify the surface properties[3]. Among them, polymer brush is a well recognized met…  相似文献   

5.
The controlled free‐radical homopolymerization of n‐butyl acrylate was studied in aqueous miniemulsions at 112 and 125 °C with a low molar mass alkoxyamine unimolecular initiator and an acyclic β‐phosphonylated nitroxide mediator, Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide, also called SG1. The polymerizations led to stable latices with 20 wt % solids and were obtained with neither coagulation during synthesis nor destabilization over time. However, in contrast to latices obtained via classical free‐radical polymerization, the average particle size of the final latices was large, with broad particle size distributions. The initial [SG1]0/[alkoxyamine]0 molar ratio was shown to control the rate of polymerization. The fraction of SG1 released upon macroradical self‐termination was small with respect to the initial alkoxyamine concentration, indicating a very low fraction of dead chains. Average molar masses were controlled by the initial concentration of alkoxyamine and increased linearly with monomer conversion. The molar mass distribution was narrow, depending on the initial concentration of free nitroxide in the system. The initiator efficiency was lower than 1 at 112 °C but was very significantly improved when either a macroinitiator was used at 112 °C or the polymerization temperature was raised to 125 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4410–4420, 2002  相似文献   

6.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
The living radical polymerization of 4‐acetoxystyrene via the RAFT process has been achieved employing bulk, solution and emulsion techniques. The rate of polymerization was studied between 60°C and 90°C. Increasing the temperature increases the rate of polymerization without affecting the polydispersity. Poly(4‐acetoxystyrene) with narrow polydispersity (1.08) was obtained. Various novel dithiocarboxylic esters and dithiocarbamates were screened as chain‐transfer agents for the RAFT polymerization of 4‐acetoxystyrene. The block copolymerization of poly(4‐acetoxystyrene) with styrene leading to poly(4‐acetoxystyrene)‐block‐polystyrene confirmed the presence of active chain ends in the first block. The acetoxy polymers were hydrolyzed to the corresponding hydroxy polymers under mild basic conditions.  相似文献   

8.
The atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) of acrylates (methyl acrylate and butyl acrylate) with allyl butyl ether (ABE) were investigated. Well‐defined copolymers containing almost 20 mol % ABE were obtained with ethyl‐2‐bromoisobutyrate as an initiator. Narrow molar mass distributions (MMDs; polydispersity index ≤ 1.3) were obtained from the ATRP experiments, and they suggested conventional ATRP behavior, with no peculiarities caused by the incorporation of ABE. The comparable free‐radical (co)polymerizations resulted in broad MMDs. Increasing the fraction of ABE in the monomer feed led to an increase in the level of incorporation of ABE in the copolymer, at the expense of the overall conversion. Similarly, RAFT copolymerizations with S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate also resulted in excellent control of the polymerization with a significant incorporation of ABE within the copolymer chains. The formation of the copolymer was confirmed with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). From the obtained MALDI‐TOF MS spectra for the ATRP and RAFT systems, it was evident that several units of ABE were incorporated into the polymer chain. This was attributed to the rapidity of the cross‐propagation of ABE‐terminated polymeric radicals with acrylates. This further indicated that ABE was behaving as a comonomer and not simply as a chain‐transfer agent under the employed experimental conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3271–3284, 2004  相似文献   

9.
A series of selenium‐substituted carbonates, S,Se‐dibenzyl dithioselenocarbonate (DTSC), S,Se‐dibenzyl thiodiselenocarbonate (TDSC), and Se,Se‐dibenzyl triselenocarbonate (TSC), were synthesized and used as mediators in radical polymerization. The results indicate that these selenium‐substituted carbonates can control the polymerization of styrene (St) and methyl acrylate, as evidenced by the number‐average molecular weight that increased linearly with the monomer conversion, molecular weights that agreed well with the predicted values, and successful chain extensions. The treatment of the resultant polystyrene by hydrogen peroxide generated polymers with approximately half‐reduced molecular weights, and the absence of carbonate groups and vinyl double bond‐terminated chain ends. The polymerization with these selenium‐substituted carbonates was the same polymerization mechanism as their analogue, the widely used S,S‐dibenzyl trithiocarbonate. This work provided a flexible protocol to incorporate selenium into the polymer chain backbone. Specifically, the treatment of these polymers by oxidation produced “clickable” vinyl‐terminated chain ends, which provided possibilities for further functionalization, for example, via a thiol‐ene click reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2606–2613  相似文献   

10.
In this article, we compare two routes for carrying out in situ nitroxide‐mediated polymerization of styrene using the C‐phenyl‐Ntert‐butylnitrone (PBN)/2,2′‐azobis(isobutyronitrile) (AIBN) pair to identify the best one for an optimal control. One route consists in adding PBN to the radical polymerization of styrene, while the other approach deals with a prereaction between the nitrone and the free radical initiator prior to the addition of the monomer and the polymerization. The combination of ESR and kinetics studies allowed demonstrating that when the polymerization of styrene is initiated by AIBN in the presence of enough PBN at 110 °C, fast decomposition of AIBN is responsible for the accumulation of dead polymer chains at the early stages of the polymerization, in combination with controlled polystyrene chains. On the other hand, PBN acts as a terminating agent at 70 °C with the formation of a polystyrene end‐capped by an alkoxyamine, which is not labile at this temperature but that can be reactivated and chain‐extended by increasing the temperature. Finally, the radical polymerization of styrene is better controlled when the nitrone/initiator pair is prereacted at 85 °C for 4 h in toluene before styrene is added and polymerized at 110 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1085–1097, 2009  相似文献   

11.
The γ‐initiated reversible addition–fragmentation chain‐transfer (RAFT)‐agent‐mediated free‐radical graft polymerization of styrene onto a polypropylene solid phase has been performed with cumyl phenyldithioacetate (CPDA). The initial CPDA concentrations range between 1 × 10?2 and 2 × 10?3 mol L?1 with dose rates of 0.18, 0.08, 0.07, 0.05, and 0.03 kGy h?1. The RAFT graft polymerization is compared with the conventional free‐radical graft polymerization of styrene onto polypropylene. Both processes show two distinct regimes of grafting: (1) the grafting layer regime, in which the surface is not yet totally covered with polymer chains, and (2) a regime in which a second polymer layer is formed. Here, we hypothesize that the surface is totally covered with polymer chains and that new polymer chains are started by polystyrene radicals from already grafted chains. The grafting ratio of the RAFT‐agent‐mediated process is controlled via the initial CPDA concentration. The molecular weight of the polystyrene from the solution (PSfree) shows a linear behavior with conversion and has a low polydispersity index. Furthermore, the loading of the grafted solid phase shows a linear relationship with the molecular weight of PSfree for both regimes. Regime 2 has a higher loading capacity per molecular weight than regime 1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4180–4192, 2002  相似文献   

12.
从二甲苯出发,经过溴甲基化反应、氧化反应、酯化反应和溴代反应,合成了一种四官能团的引发剂,4,6-二(溴甲基)-1,3-苯二甲酸二甲酯.用该引发剂引发苯乙烯进行原子转移自由基聚合,实验结果表明聚合反应具有活性自由基聚合的特征.通过苯乙烯的本体聚合反应获得了分子量可控、双酯基位于聚合物链中间的聚苯乙烯.经过水解反应,使聚合物中的双酯基被水解成双羧基,从而得到了结构对称的两亲性聚合物,双羧基聚苯乙烯.利用该聚合物具有分子识别的特性,与十二烷胺形成了离子键超分子化合物.此工作为超分子星形聚合物的设计合成提供了简便快捷的方法.  相似文献   

13.
处理了无链转移时脉冲激光引发自由基聚合中的动力学问题:推导出聚合产物数均和重均分子量的严格数学表达式,给出了链自由基、死聚物及总的聚合产物的归一化的分子量分布函数,计算结果表明:随着单体转化率的上升,各种分子参数,例如数均和重均分子量,以及多分散指数的数值周期性地振荡,且振幅逐渐下降,分子量分布曲线则包含一些特征峰,且随着每次脉冲激光产生的初级自由基浓度的降低,分布曲线峰的数目增加,另外,与歧化终止相比,偶合终止使产物的分子量分布略为变窄.  相似文献   

14.
The effect of the variation of the alkoxyamine concentration on the conversion and polydispersity of the nitroxide‐mediated living free‐radical polymerization of styrene is discussed. Four different alkoxyamines ( 1 – 4 ) have been used for these studies. For an alkoxyamine with a small equilibrium rate constant (K), such as styryl–TEMPO 2 , the conversion is governed by the autopolymerization of styrene. For efficient alkoxyamines 1 , 3 , and 4 , the conversion at high alkoxyamine concentrations is higher than the conversion obtained by autopolymerization. At high alkoxyamine concentrations, the conversions vary to a small extent for all the alkoxyamines studied. As long as the conversion remains high, the polydispersity index is small. In addition, simulations of polymerizations with a program for modeling nonlinear dynamics are discussed. Polymerizations with efficient alkoxyamines at high alkoxyamine concentrations are well described by the kinetic scheme applied. K for alkoxyamines 1 and 4 has been estimated with the simulations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3342–3351, 2004  相似文献   

15.
A kinetic model has been developed for reversible addition–fragmentation transfer (RAFT) polymerization with the method of moments. The model predicts the monomer conversion, number‐average molecular weight, and polydispersity of the molecular weight distribution. It also provides detailed information about the development of various types of chain species during polymerization, including propagating radical chains, adduct radical chains, dormant chains, and three types of dead chains. The effects of the RAFT agent concentration and the rate constants of the initiator decomposition, radical addition, fragmentation, disproportionation, and recombination termination of propagating radicals and cross‐termination between propagating and adduct radicals on the kinetics and polymer chain properties are examined with the model. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1553–1566, 2003  相似文献   

16.
Polystyrene nanocomposites, being a combination of nanoclay-attached and free polystyrene chains were prepared using in situ atom transfer radical polymerization. Subsequently, they were electrospun to form fibers with diameter varying from 450?C700 nm according to scanning electron microscopy data; in addition, the transmission electron microscopy and x-ray diffraction analysis revealed that nanoclay layers were oriented along the nanofiber axis during the electrospinning process. Molecular weight of the extracted free polymer chains from the nanocomposites is higher than the attached chains. However, Anchored chains are characterized by higher polydispersity index in comparison with the free ones. Polydispersity index of polymer chains increases by the addition of nanoclay. Thermogravimetric analysis results shows that increasing clay content leads to a decrease in the quantity of polymer chains attached to the clay surface.  相似文献   

17.
The effect of polymerization conditions on the molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by azo and peroxyester groups introduced onto the surface was investigated. The molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by surface azo and peroxyester groups decreased with decreasing monomer concentration and polymerization temperature. The molecular weight of polystyrene was found to be controlled to some extent by the addition of a chain transfer agent. The molecular weight of grafted chain on silica surface obtained from the graft polymerization initiated by surface radicals formed by photodecomposition of azo groups was considerably smaller than that by thermal decomposition. The number of grafted polystyrene in photopolymeriztion, however, was much larger than that in thermal polymerization. These results are explained by the blocking of surface radicals formed on the silica surface by previously grafted polymer chain: when the decomposition of surface azo and peroxyester groups proceed instantaneously at the initial stage of the polymerization, the number of grafted polymer chains increased.  相似文献   

18.
双烯化合物类单体合成支化聚合物的支化结构的研究   总被引:1,自引:0,他引:1  
分别以二乙烯基苯(DVB)、双甲基丙烯酸二缩三乙二醇酯(tri-EGDMA)和1,6-双马来酰亚胺基正己烷(BMIH)为支化单体,采用原子转移自由基聚合合成支化聚苯乙烯;以先核后臂法合成的星状支化聚苯乙烯为参照对合成的支化聚合物的支化形态进行研究.采用气相色谱(GC)、核磁共振氢谱(1H-NMR)和三检测凝胶渗透色谱(TD-SEC)测定了苯乙烯的转化率,聚合物分子量及其分布,特性黏数和均方回转半径.实验结果表明3个支化聚合反应体系内悬垂双键是逐步消耗的,不存在明显的成核过程.反应前期,以形成带有悬垂双键的初级链和轻度支化聚合物为主,聚合物分子量随单体转化率逐步上升;反应后期,悬垂双键聚合导致的分子之间的偶合更加明显,使得聚合物分子量快速上升,合成得到的都是无规支化聚合物.  相似文献   

19.
Starlike polystyrenes composed of a microgel core and arms terminated with benzophenone groups were used as organic supports for a tridentate bis(imino)pyridinyliron catalyst for ethylene polymerization in the presence of trimethylaluminum as a cocatalyst. The microgels were synthesized by the atom transfer radical polymerization of styrene initiated by 4‐(1‐bromoethyl)‐benzophenone, with divinylbenzene as the crosslinker. The bromine polystyrene chain ends prevented the ethylene polymerization reaction and had to be removed. This was readily achieved with Cu0 together with dodecanethiol as a transfer agent. When used as supports in the presence of trimethylaluminum and 2,6‐bis[1‐2,6(diisopropylphenyl)imino]ethylpyridynyl iron, these bromine‐free, functionalized polystyrene stars enabled the production of polyethylene beads of a spherical morphology and high bulk density with a catalytic activity similar to that under homogeneous reaction conditions. Moreover, the molar mass distribution of the polyethylene was narrow, suggesting limited transfer to trimethylaluminum. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6997–7007, 2006  相似文献   

20.
A dynamic covalent polymer incorporating thermally alkoxyamine units in the main chain was synthesized. Due to a radical crossover reaction between the alkoxyamine units, an interchange of the main chains in poly(alkoxyamine ester) was observed on heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号